European Journal of Education Studies

ISSN: 2501 - 1111 ISSN-L: 2501 - 1111 Available on-line at: <u>www.oapub.org/edu</u>

10.5281/zenodo.59858

Volume 2 | Issue 2 | 2016

SECONDARY STUDENTS' OPINIONS ABOUT SOUND PROPAGATION

Murat Okur¹ⁱ, Hüseyin Artun²ⁱⁱ

¹Asst. Prof. Dr., Cumhuriyet University Faculty of Education, Department of Primary Education, Science Education Department, Turkey ²Asst Prof. Dr., Yüzüncü Yıl University, Faculty of Education, Department of Primary Education, Primary School Teaching Department, Turkey

Abstract:

The aim of this study is to investigate the misconception in "Sound Propagation" topic, within the direction of students' opinions that can be occurred by using different teaching methods all together. The study includes activities based on 5E learning model, conceptual change texts, study sheet supported by analogies, and computer-assisted teaching materials. The sample of this qualitative study is made up of 8 students at 5th grade from a secondary school in Trabzon. Semi-constructed interview is used as data collection tool. Data collected after the analysis of interview are transferred to the reader without any deterioration in meaning. It is found out that, using different methods all together in "Sound Propagation" topic is more effective and misconceptions are removed at the end of the study.

Keywords: analogy, conceptual change, sound propagation, study sheet, 5E learning model

1. Introduction

One of the subjects that students have difficulty in concreting in their minds and have misconceptions is that "Sound Propagation" subject. There have been studies from a range of countries related with defining misconceptions about "Sound Propagation" subject which included Science and Technology Curriculum (Okur, 2009; Çalık, Okur & Taylor, 2010; Demirci & Efe, 2007; Eshach & Schwartz, 2006; Hrepic, 1998, 2004; Linder

ⁱ This study is produced from writer's master thesis.

[&]quot; Correspondent author: email <u>huseyinartun@gmail.com</u>

& Erickson, 1989; Linder, 1993; Merino, 1998 a,b; Maurines, 1993). However it can be said that there have been very limited studies conducted related with eliminating these conceptions. From this point of view, within the scope of this study educational material developed with different methods that provide conceptual change, eliminating misconceptions related with "Sound Propagation" is studied and students' ideas are investigated.

2. Related Literature Review

In literature Driver et al. (1994), Hapkiewicz (1992), Hapkiewicz and Hapkiewicz (1993) have found related various misconceptions about sound. These misconceptions are presented in Table 1.

Scope	Misconceptions	Studies	
		conducted	
	✓ Sound is a moving object that travels one place	Barman and	
	to another.	Miller	
		(1996)	
	✓ Sound can be produced without using a	Hapkiewicz	
	concrete item.	(1992)	
	✓ Human sound occurs as a result of clashing	Beaty (2000)	
	many vocal cords.		
	\checkmark Sound occurs as a result of clashing vocal	Demirci and	
Sound and formation	cords.	Efe	
of the sound	\checkmark Sound occurs with reflection of molecules from	(2007)	
	a surface.		
	✓ Sound occurs by pushing of air.	Eshach and	
		Schwartz	
\checkmark Sound is transmitted as similar to leakage from		Driver et al	
	holes and spaces.		
\checkmark Sound is a substance that travels in the air		Linder and	
	generally by repulsion.	Ericson	
	\checkmark Sound is a substance that is transmitted as	(1989)	
	some travelling models.		
	\checkmark Force, source of sound provides mixture of	Maurines	
	velocity and energy to the setting and	(1993)	
	communication is occurred via "sound		

Table 1: Misconceptions about Sound Propagation

		particle" in this setting.	
	\checkmark	Sound is perceived as a far object in a far place.	Hrepic (1998)
	\checkmark	Materials slow down the propagation of	
		sound.	
	\checkmark	Sound propagates as an object similar to a	
		particle.	
	\checkmark	The more solid matter intensifies, the harder	Maurines
		that the sound propagates.	(1993)
	\checkmark	Sound propagates in space, Sound propagates	Zeybek
		best in gas.	(2007),
			Eshach and
			Schwartz
			(2006)
	\checkmark	Sound is transferred with separate molecules	Linder and
		that travel from a setting.	Ericson
	~	Sound is transmitted from one molecule to another.	(1989)
	✓	The velocity of a sound is a result of molecular segregation.	
	\checkmark	The velocity of sound is connected with a	Linder (1993)
		function that changes related with physically	
		blocking of molecules moving in the setting.	
	\checkmark	Sound velocity is a function of compressibility	
		of a setting.	
Propagation of Sound	~	Sound travels within solid matters.	Barman and Miller
			(1996)
	~	We can simultaneously see and hear of an event in far.	Beaty (2000)
	\checkmark	Sound moves faster in air than solids.	
	\checkmark	Sound waves vanishes when interact with a	Hapkiewics
		solid surface.	and
			Hapkiewics
			(1993)
	\checkmark	Sound can be propagates in space.	Maurines
			(1993),
			Hrepic (2002),
			Hapkiewicz
			(1992)
	✓	For propagation for sound, there is no need for	

		setting.	
	\checkmark	As the intensity of setting increases,	Maurines,
		propagation of sound becomes harder.	1993
	\checkmark	The velocity of sound depends on dilation of	
		signals by which the source of the sound	
		occurred. There is a linear relationship	
		between velocity and dilation.	
	√	Sound propagates in setting without air and	
		stops by hitting to a hinder.	
	\checkmark	Sound propagates more quick if it is not met	Demirci and
		with a hinder in the air.	Efe
	\checkmark	As solid matters have less intensity, sound	(2007)
		propagates more quickly.	
	\checkmark	As there is no air in the atmosphere, sound	
		propagates more quick in solid.	
	\checkmark	If sound is high, it takes faster way.	Hrepic (1998)
	√ √	If sound is high, it takes faster way. Wind effects frequency of the sound.	Hrepic (1998)
	✓ ✓ ✓	If sound is high, it takes faster way. Wind effects frequency of the sound. The velocity of sound propagation depends on	Hrepic (1998) Demirci and
Speed of sound,	✓ ✓ ✓	If sound is high, it takes faster way. Wind effects frequency of the sound. The velocity of sound propagation depends on sound's intensity and resonance.	Hrepic (1998) Demirci and Efe
Speed of sound, Intensity of sound,	✓ ✓ ✓ ✓	If sound is high, it takes faster way. Wind effects frequency of the sound. The velocity of sound propagation depends on sound's intensity and resonance. The high and low pitches of sound are the	Hrepic (1998) Demirci and Efe (2007)
Speed of sound, Intensity of sound, Frequency of sound,	✓ ✓ ✓	If sound is high, it takes faster way. Wind effects frequency of the sound. The velocity of sound propagation depends on sound's intensity and resonance. The high and low pitches of sound are the intensity of sound.	Hrepic (1998) Demirci and Efe (2007)
Speed of sound, Intensity of sound, Frequency of sound, Height of sound	✓ ✓ ✓ ✓ ✓	If sound is high, it takes faster way. Wind effects frequency of the sound. The velocity of sound propagation depends on sound's intensity and resonance. The high and low pitches of sound are the intensity of sound. Hard hitting to an object changes its sound	Hrepic (1998) Demirci and Efe (2007) Beaty (2003)
Speed of sound, Intensity of sound, Frequency of sound, Height of sound	✓ ✓ ✓ ✓ ✓	If sound is high, it takes faster way. Wind effects frequency of the sound. The velocity of sound propagation depends on sound's intensity and resonance. The high and low pitches of sound are the intensity of sound. Hard hitting to an object changes its sound curtain	Hrepic (1998) Demirci and Efe (2007) Beaty (2003)
Speed of sound, Intensity of sound, Frequency of sound, Height of sound	✓ ✓ ✓ ✓ ✓ ✓	If sound is high, it takes faster way. Wind effects frequency of the sound. The velocity of sound propagation depends on sound's intensity and resonance. The high and low pitches of sound are the intensity of sound. Hard hitting to an object changes its sound curtain The intensity of sound defines sound's thin	Hrepic (1998) Demirci and Efe (2007) Beaty (2003) Zeybek (2007)
Speed of sound, Intensity of sound, Frequency of sound, Height of sound	✓ ✓ ✓ ✓ ✓	If sound is high, it takes faster way. Wind effects frequency of the sound. The velocity of sound propagation depends on sound's intensity and resonance. The high and low pitches of sound are the intensity of sound. Hard hitting to an object changes its sound curtain The intensity of sound defines sound's thin and thickness.	Hrepic (1998) Demirci and Efe (2007) Beaty (2003) Zeybek (2007)
Speed of sound, Intensity of sound, Frequency of sound, Height of sound		If sound is high, it takes faster way. Wind effects frequency of the sound. The velocity of sound propagation depends on sound's intensity and resonance. The high and low pitches of sound are the intensity of sound. Hard hitting to an object changes its sound curtain The intensity of sound defines sound's thin and thickness. Hitting to an object stronger changes sonority	Hrepic (1998) Demirci and Efe (2007) Beaty (2003) Zeybek (2007) Hapkiewicz
Speed of sound, Intensity of sound, Frequency of sound, Height of sound		If sound is high, it takes faster way. Wind effects frequency of the sound. The velocity of sound propagation depends on sound's intensity and resonance. The high and low pitches of sound are the intensity of sound. Hard hitting to an object changes its sound curtain The intensity of sound defines sound's thin and thickness. Hitting to an object stronger changes sonority of sound.	Hrepic (1998) Demirci and Efe (2007) Beaty (2003) Zeybek (2007) Hapkiewicz (1992)
Speed of sound, Intensity of sound, Frequency of sound, Height of sound		If sound is high, it takes faster way. Wind effects frequency of the sound. The velocity of sound propagation depends on sound's intensity and resonance. The high and low pitches of sound are the intensity of sound. Hard hitting to an object changes its sound curtain The intensity of sound defines sound's thin and thickness. Hitting to an object stronger changes sonority of sound. Human sounds are uttered by voice cords	Hrepic (1998) Demirci and Efe (2007) Beaty (2003) Zeybek (2007) Hapkiewicz (1992)

2. Application Process

In this research the qualitative method is used.

2.1 Sampling

This study is conducted with 20 students from four different 5th classes, totally 80 students of a central secondary school in Trabzon city. That researchers could conduct their studies in a more comfortable setting, sample students were volunteer, students were alike from similar physical and cognitive features and the school was suitable for the study in terms of physical opportunities were taken into consideration. Interviews

made within the scope of the study are conducted by selecting from the same sample. While selecting the students for the interview, change levels in the points are taken into consideration. Depending on this, the study is conducted by defining a student from each group that shows maximum and minimum change. Based upon the results of the concept achievement tests applied in advance to students, totally 8 students are included in the interview aged between 11-12 which are 4 students (A₁₆, B₁, C₅, D₁₀) that show maximum change and 4 students (A₆, B₄, C₁₇, D₁₄) that show minimum change.

2.2 Data Collection Tool

Semi-structured interviews are conducted in the study. This interview provides flexibility to researcher. Furthermore, it has also advantages such as pre-developed questions are changeable during the interview or can be explained in detail (Çepni, 2010). The aim of semi-structured interview is to understand participants' point of view with open-ended questions. Researcher tries to create an adaptation with participant and interview is to be conducted in a mutual chat way (Yıldırım & Şimşek, 2000). Some of the interview questions are developed by researchers; some of them are adapted from Eshach & Schwartz's (2006) study into Turkish. In order to conduct interviews healthy, students' are settled down by chatting sometime with them and they are provided to express themselves comfortably. Content validity is provided for semistructured interview question after the examination of two experts studying in science education. It is cared that interview questions are clear enough and not be misunderstood by students. Collected data is recorded by voice recording device and are turned into written documents later and data validity is tried to be provided by examining to the interviewees. Furthermore, voice recordings are secretly kept in terms of data security. During the interviews, it is stressed that students' will not loss from the study. Their names are kept confidential and symbols are used.

2.3 Data Analysis

In analysis of interview questions, students' answers are transferred to the readers without any change in the meanings. It stated that this kind of analysis is helpful (Çepni, 2010). When interview data transferred to the readers by taking into parenthesis, reader confronts with data and finds the opportunity to interpret what they mean (Çepni, 2010).

Among the student materials within the scope of the study, there are analogy map, study sheets, conceptual change text and computer-assisted materials. The materials used in the study are used in four different classes with a four different methods. Process related to application is given in Figure 1.

Figure 1: Place of Use of the Educational Materials

As it is understood from the figure above that, Group A is control group and traditional teaching method is used in this class. In class B, in addition to traditional teaching method conceptual change texts are applied as a teaching material to the students. Furthermore, the texts are negotiated by students in class. In class C, teaching is delivered complies with 4E model based upon constructivist learning theory. Firstly, students are given study sheets. Students attention are tried to be taken via caricature, proverb and question at the top of the study sheets. In the second step, students have the activity done. At the end of the activity, students are asked to answer the questions according to the results from the data they gathered. The third step is the stage where in-class negotiations are done and the teacher delivers or verifies the knowledge. The teacher at this stage uses different reinforce activities within the topic. In this stage analogy map is shown to the students and necessary explanations are done. In the fourth stage, students are asked to answer the evaluation questions at the end of the study sheet. In class D, teaching is delivered complies with 5E model based upon constructivist learning theory. The difference of 5E from 4E is the elaborate step. In addition to analogy map shown to C class, animation prepared via flash program is presented in third step and computer-assisted materials are shown in elaboration step as a fourth step. These are conceptual change text and 5 minutes educative video show prepared via Windows Movie Maker. As the fifth step evaluation questions at the end of the study, sheet are used.

3. Findings

Findings gathered through the interviews are transferred to the readers after evaluating every question separately. In the first question of the interview, students are asked

"What is sound? In which settings does the sound propagate? In which settings does the sound not propagate? Why?" students' answers are shown in Table 2.

	1 abic 2, 1 m	unigs belong 101 list	Question of the inter-	
	Definition of the	The Setting That	The Setting That	The Setting That The
Student	Sound	The Sound	The Sound Not	Sound Propagates
		Propagates and Its	Propagates and Its	Best and Its Sample
		Sample	Sample	
A16	It propagates as in	Solid, Liquid, Gas	Hole	Solid
	vibrations.	<i>Sample:</i> Table,	No molecule	<i>Because,</i> there are
		Water, Air	I don't know	many molecule
B_1	It occurs by	Solid, Liquid, Gas	Hole	Solid
	densely massed of	<i>Sample:</i> Cooker,	No molecule	Because, molecules
	the molecules.	Water, Air	Space	are proximate to
				each other
C ₅	Energy that	Solid, Liquid, Gas	Hole	Solid
	spread as waves	<i>Sample:</i> Wood,	No molecule	Because, molecules
		Water, Air	Space	are proximate to
				each other
D10	It occurs as a	Solid, Liquid, Gas	Hole	Solid
	result of	Sample: Wood, Sea,	No molecule	Because, molecules
	vibrations and	Air	Space	are more proximate
	spreads out			to each other,
				cramped
A ₆	Don't know.	Space	Solid, Liquid, Gas	Space
		Sample: Inside the	Don't know, Don't	Because, spread out
		room	know	since its empty
B ₄	It is a source of	Solid, Gas, Space	Liquid	Space
	object.	Sample: Wood, Air,	Don't know, Don't	Because, sound is
		Stew pot	know.	echoing inside the
				stew pot.
C17	Settings that	Solid, Liquid, Gas	Hole	Solid,
	spread out as	<i>Sample:</i> Eraser,	Space	I don't know.
	waves	Water, Air	Don't know.	
D14	It spreads out as	Solid, Liquid, Gas	Hole,	Solid
	waves. It occurs	Sample: Wood, Sea,	Space	Because, molecules
	with vibrations.	Air	No molecule	are proximate to
				each other.

Table 2: Findings Belong To First Question Of The Interview

 C_5 coded student answers are given in Table 3, which shows the maximum change group.

Table 3: C5 Coded Student's Answers to the Interview				
Interview Question	Student's Answer			
I: What is sound?	C ₅ : Sound is a kind of energy that spreads out as waves.			
I: In which settings does sound	C5: It spreads out in solid, liquid, gas; not spreads out in			
propagates, in which not?	space.			
I: Why it propagates in solid,	C ₅ : It spreads out in solid, liquid and gas because there are			
liquid and gas and does not	molecules. Hole is a space hole; it does not spread out for			
propagate in hole?	this reason. There is no molecule.			
I: In which setting does sound	Cs: In solid setting			
propagate best?				
I: Why?	C ₅ : It is because molecules are dense in solid setting.			
I: Can you give examples to solid,	C ₅ : Wood is for solid, water for liquid, air for gas and space			
liquid, gas and hole setting?	for hole.			

Answers of A₆ coded student's that takes places in the group that shows the minimum change is given in Table 4.

Interview question	Student's answer
I: What is sound?	A6: Sound. I forgot is but we studied in the lesson. I
	do not know.
I: In which settings does sound	A6: It spreads out in space; not spreads out in solid,
propagates, in which not?	liquid and gas.
I: Why it propagates in solid, liquid and	A6: In spaceIt spreads out since its empty.
gas and does not propagate in hole?	
I: Ok, why others does propagates?	A6: I forgot it. I do not know.
I: In which setting does the sound	A6: Space but I forgot he reason.
propagates best? Why?	
I: Can you give examples for solid,	A6: For space, it is inside of the room. For the space it
liquid and space settings?	is inside the room. I forgot for the solid, liquid and
	gas setting.

It is created in light with the ideas of the students that show maximum (A₁₆, B₁, C₅, D₁₀) and minimum (A₆, B₄, C₁₇, D₁₄) change for second, third and fourth questions of the interview. These ideas are summarized in Table 5.

Murat Okur, Hüseyin Artun -SECONDARY STUDENTS' OPINIONS ABOUT SOUND PROPAGATION

	Table 5: Finding Belongs To Second, Third and Fourth Questions of the Interview				
	2. Question	3. Question	4. Question		
Std.	Comparison of Solid-Gas	Comparison of Liquid-Gas	Comparison of Space-Gas		
	Settings	Settings	Settings		
	I hear better in the second	Since second setting is	I hear sound in the Moon		
	setting. Because second	liquid I hear better than the	worse than the Earth. I do		
A16	setting is solid. Solid setting	first setting. There are more	not know the reason.		
	transmits the sound better.	molecules in liquid.			
	There are two settings; the	There are two settings; the	There is air setting in the		
	first one is gas second one is	first one is gas second one	earth. There is no air in the		
	solid. Solid setting helps me	is liquid. Sound propagates	space. Sound cannot be		
B_1	to hear the sound better.	better in air than the liquid	transmitted. I cannot hear		
	Solid transmits the sound	setting.	the sound in the moon.		
	best.				
	I can hear better when I rest	Here the first setting is gas,	I cannot hear the sound in		
	to the ground. Ground is a	second one is liquid. Sound	the moon. Sound does not		
C ₅	solid setting, first setting is	is transmitted best in liquid	propagate in space.		
	air. Solid transmits the sound	than the gas setting.			
	best.				
	First setting is gas, second	Liquid setting is denser	Moon is a space setting,		
	setting is solid. Solid setting	than gas setting, which	earth is a gas setting. I		
D10	is dense, that means	means molecules are closer	cannot hear sound in the		
	molecules are closer. It	so I can hear the sound best	moon. There is no molecule		
	transmits better.	in the second setting.	that transmits sound.		
	I can hear well. But I do not	I cannot hear the sound.	I can hear the same. I can		
	know the reason. I think solid	Because it is liquid I cannot	hear what is spoken in the		
A ₆	setting and space setting are	hear the sound. I think	earth so I can hear in the		
	compared.	liquid and air setting.	moon. I do not know the		
			reason.		
	I can hear better than the first	I can hear better. First	I cannot hear. Because there		
	case. When I rest my ear to	setting is liquid, second	is no gas in the moon I		
	the ground, there is more	setting is solid. I do not	mean air. We cannot		
B_4	sound the first setting is	know the reason	breathe in the moon. I do		
	space second setting is solid		not know the settings.		
	I hear badly. Because sound	I hear well. First setting is	I cannot hear the sound. If		
	is not propagated in space.	liquid, second setting is	we think that we are in the		
C17	First setting is solid, second	solid. I do not know the	space, sound does not		
	setting is space.	reason.	propagate. The moon is		
			space earth is gas.		

	I can hear than the first	I can hear better than the	I cannot hear. Sound does
	setting. Because ground is	first case. Because sound	not propagate in space. It
D_{14}	solid. Solid transmits the	propagates better in liquid	propagates in earth because
	sound better. First setting is	than the air first setting is	of the air. First setting is
	air second setting is solid.	air second is liquid.	space second is air

From the group that shows the most frequent change for the second question of the interview D_{10} and the least frequent change B_4 are given in Table 6 and Table 7 in sequence.

Table	6:]	Detailed	Answer	of the	D10	Coded	Student t	o the	Interview
	~ .		1 11 10 11 01	01 11 0			o concerce c	~ ~ ~ ~	111001 / 10 //

Interview Question	Student's Answer
I: Think of a man is digging a hole with a driller in the	D ₁₀ : I can hear better than the first
middle of a big and silent park. You hear the sound of	case.
the driller although you are far away from the man. If	
you think that you rest your ear to the ground and listen	
to the sound. How do you hear than the first case?	
Explain it.	
I: Why?	D10: Because air setting, sorry solid
	setting is denser than air setting. I
	can hear best when I rest my ear to
	the solid setting because sound is
	transmitted best.
I: What do you mean by saying dense?	D ₁₀ : Molecules are closer to each
	other.
I: Ok, what is the first setting and what is the second	D10: First setting is gas, second
setting?	setting is solid.

	Table 7: Detailed	Answer of	f the B4	Coded	Student to	the Interview
--	-------------------	-----------	----------	-------	------------	---------------

Interview Question	Student's Answer
I: "Think of a man is digging a hole with a driller in the middle of a	B4: I hear better.
big and silent park. You hear the sound of the driller although you are	
far away from the man. If you think that you rest your ear to the	
ground and listen to the sound. How do you hear than the first case?	
Explain it"	
I: Why?	B4: Because I hear a bit
	medium level, when I
	rest my ear I hear
	better.
I: There are two setting. How is the first setting?	B4: It can be space.

Murat Okur, Hüseyin Artun -SECONDARY STUDENTS' OPINIONS ABOUT SOUND PROPAGATION

I: Second setting	B4: Solid
I: Which two setting s are compared?	B4: Space and solid
I: Ok, why do we hear best in solid setting?	B4: I do not know the
	reason.

From the group that shows the most frequent change for the third question of the interview B_1 and the least frequent change B_4 are given in Table 8 and Table 9 in sequence.

Table 6: Detailed Answer of the BT Coded Student to the Interview	
Interview Question	Student's Answer
I: You see that a sea boat is approaching towards you while you are	B1: I can hear better.
swimming in the sea. You hear the sound of the boat while your	
head is out of the sea. How do you hear the sound when you sink	
your head to the sea than the first case? Explain."	
I: Why?	B1: Because sound
	propagates best in liquid
	than the air substance.
I: There are two setting, what is the first setting, what is the second	B1: First setting is air
setting?	second setting is liquid
	setting.

Table 8: Detailed Answer	of the B1 Coded	Student to the Interview
--------------------------	-----------------	--------------------------

Table 9: Detailed Answer of the B4 Coded Student to the Interview	
Interview Question	Student's Answer
I: You see that a sea boat is approaching towards you while you	B4: I can hear well.
are swimming in the sea. You hear the sound of the boat while	
your head is out of the sea. How do you hear the sound when you	
sink your head to the sea than the first case? Explain."	
I: Why?	B4: Because sound
	propagates in liquid than
	the air. I cannot say any
	more.
I: Ok, what are the two settings are compared?	B4: Air I mean gas with
	liquid.
I: What is the first setting, what is the second setting?	B4: First setting is gas
	second setting is liquid.
I: What do you deduce at last?	B4: Better is liquid, less
	propagates in air.

From the group that shows the most frequent change for the third question of the interview A_{16} and the least frequent change C_{17} are given in Table 10 and Table 11 in sequence.

Table 10: Detailed Answer of the A16 Coded Student to the Interview	
Interview Question	Student's Answer
I: "Think that you are in the surface of the moon. When you talk	A16: No. I hear worse.
with him in the surface of the moon, can you hear his talking as	
you are in the earth? Explain?	
I: Why?	A16: I do not know the
	reason
I: Ok, what are two setting are compared here? What is the first	A16: There are air gas and
setting what is the second setting?	solid setting here I think.

Table 11: Answer of the C17 Coded Student to the Interview	
Interview Question	Student's answer
I: "Think that you are in the surface of the moon. When	C17: I cannot hear.
you talk with him in the surface of the moon, can you	
hear his talking as you are in the earth? Explain?	
I: Why?	C ₁₇ : Because if we think that we are
	in space, sounds are not heard in
	space so I cannot hear.
I:? Ok, what are two setting are compared here? What is	C17: Moon setting is space, earth is
the first setting what is the second setting?	gas.

By taking students' opinions into consideration, related with the fifth question of the interview, answers of the students that show maximum and minimum change are integrated in Table 12.

	Table 12. Findings belongs to Finit Question of the interview
Student	Space Setting
A16	Space is far away to us; I cannot hear the sound.
B 1	I cannot hear. Sound does not propagate in space.
C ₅	I cannot hear. There is no molecule in the space.
D10	I cannot hear. There is no molecule to transmit the sound.
A ₆	I cannot hear. Because I am not in space.
B4	I can hear a little. Because the moon is close the earth.
C17	I cannot hear. There is sound hole in the space.
D14	I cannot hear. There is no molecule in the space.

Table 12: Findings Belongs To Fifth Question of the Interview

From the group that shows the most frequent change for the fifth question of the interview A₁₆ and the least frequent change D₁₄ are given in Table 13 and Table 14 in sequence.

Table 13: Detailed Answer of the A16 Coded Student to the InterviewInterview QuestionStudent's AnswerI: "Can you see the big explosions in the space? Can hearA16: No.their sound? Explain?"Image: Can you hear these explosions' sound?A16: No.I: Why do not you hear?A16: No.A16: No.I: Why do not you hear?A16: Decause they are far
to earth.

Table 14: Detailed Answer of the D14 Coded Student to the Interview

Interview Question	Student's Answer
I: "Can you see the big explosions in the	D14: No.
space? Can hear their sound? Explain?"	
I: Ok, can you hear these explosions'	D14: I cannot hear.
sound?	
I: Why do not you hear?	D ₁₄ : Because there are holes in the space. There is no
	air in the space. Since there is no molecule I cannot
	hear.

4. Discussion and Conclusion

Findings gathered within the scope of the study are examined in direction with the answers of the students' to the interview questions. In the question it is asked that whether sounds occur as a result of explosions in the space are heard or not, it can be interpreted that students do not know space has cavernous structure from their answers "sounds cannot be heard because of remoteness of space to earth". This case can be an indication that their misconceptions are not eliminated. The reason for not eliminating the alternative concepts in class A, it can be thought that present education materials used in our education system are not suitable for classroom settings, their inefficiencies and cannot concretised the abstract concepts. One of the application conducted related with propagation of the sound in solid, liquid and gas setting, in the activity that propagation of sound in solid setting one student hit the desk with his hand the other student tried to understand the propagation by listening to this sound with his ear. Later, in order to show that the propagation of sound in liquid setting, two stones are crashed each other in a bucket full of water and student are asked to listen the sound.

Lastly, when the propagation of sound in gas setting is explained, it is said that students' talking with each other is asked to be taken into consideration and sound is propagated in air (gas). As these activities are conducted in classroom setting, it can be thought that students can have alternative concept that sound is propagated best in air (gas). At the end of this application, it is defined that students compare in what setting sound propagates best. When the answer of A₆ coded student to the interview that "It propagates in space; does not propagate in solid, liquid and gas. It propagates in space because it is empty" is investigated we can see that misconceptions are not eliminated.

When the expressions of students, that show most frequent change in B class in which conceptual change texts are applied with present education system, are investigated it is seen that students give correct answers together with reasons. In comparison of solid, liquid and gas settings questions, reasons of second and third questions cannot be explained, however C17 coded student give correct answer as "I cannot hear because if we thought that we are in space so sounds are not heard in the space." According to the answers of the students to the fifth question of the interview, as they stated that sound is not transmitted since space is an empty setting and there are no molecules it is seen that these texts are effective in eliminating misconception. Effectiveness of conceptual change texts in this way is supported by conducted studies (Chambers & Andre, 1997; Çaycı, 2007; Geban & Bayır, 2000). It can be said that eliminating alternative concepts existed in B class and explaining the reason of problem conceptual change text by giving examples from daily life and concreting the abstract concepts, students motivations are increasing. When related literature is investigated about conceptual change texts, there are results that support the research (Çakır, Uzuntiryaki & Geban, 2002; Çalık, 2006; Diakidoy, Kendeou & Ioannides, 2003; Uzuntiryaki & Geban, 1998; Ünal, 2007). Conceptual change text used in this study developed as narrational conceptual change text which especially takes the attention of secondary level students and provides them to read without feeling bored, can be thought as factor for eliminating alternative concepts and increase conceptual understanding.

From the answers of the students in C class, in which analogy and study sheets were used together, it is seen that a significant difference in conceptual understanding level. We can give the answer of the C⁵ coded student as an example "I can hear better when I lean to ground. Molecules are denser in solid, so they transmit sound better". Analogies have features like simplifying concepts, making them more understandable, concreting the abstract concepts and explaining the unknown from the known (Chambers & Andre, 1997; Çalık, 2006). Empowering education materials by combining study sheets, which have features like taking the attention to the related topic and forming the necessary setting for realizing desired learning, with analogies can be reason for increased conceptual understanding of the students at C class. As a result it can be said that analogy-supported study sheets are effective in eliminating alternative concepts of the students (Artun, 2009; Artun & Coştu, 2011; Artun & Coştu, 2013; Çalık, 2006). The reasons that activities rely on group work and cooperative learning, students learn the concepts by doing, content of educational material reflects a part from daily life, application of them are easy and based on gadgets that can be available every time can be shown in eliminating alternative concepts. Literature also supported this interpretation (Cahyadi, 2004; Coştu & Ünal, 2004; Huddle, White & Rogers, 2000; Nottis & McFarland, 2001; Özmen & Yıldırım, 2005; Saka & Yılmaz, 2005; Tsai, 1999; Toluk & Orkun, 2004). From the computer-assisted education materials, using Flash animation and video films can be resulted in students' animate events concretely and understand them at scientific level. Furthermore, it can also be said that education materials applied during the lesson effect students' participation positively. It is observed that students are competing each other to take a part in the activities. As it is seen from these explanations, to provide conceptual change and eliminating alternative concepts, D class's understanding increased to high level, in which educational materials based on 5E learning model,

When the answers of D class students to whom the lesson is thought according to 5E learning model in which the education materials used together that provide conceptual change, it is seen that answers gathered from experiment group are more scientific and explanatory. We can give the answer of the D10 coded student as an example "Liquid setting is more intense than gas setting, molecules are denser that is why I hear sound better in the second setting". It can be said that D class are provided study sheet, analogy, conceptual change text and computer-assisted education materials are used together and the course is designed according to the steps of 5E learning model. On the other hand, it is observed that students cautiously watched the video film and animation developed with Flash program. In Flash animation show, transmission of sound and setting differences are presented visually and it is tried to increase the student's understanding at high level by animating the simulation that is encountered in daily life (Çalık, 2006; Artun, 2009; Artun & Coştu, 2011; Artun & Coştu, 2013). In the same way, it is thought that showing the conceptual change text supporting by quoting subtitle from the video film provides contribution to students to concentrate on the course (Coştu, Çepni, Taş & Köse, 2006; Friedler, Merin & Tamir, 1992; Özmen & Kolomuç, 2004; Saka & Akdeniz, 2006; Ünal, 2007). Another reason for eliminating alternative concepts can be that, different from the other groups new concepts learned in the elaboration step of 5E model give opportunity to applying new cases. In many studies based on 5E learning model show parallelism with the studies in

the literature that conceptual change is ensured and alternative concepts are eliminated (Bayar, 2005; Kör, 2006; Yaman, Demircioğlu & Ayas, 2006).

As a result, it can be said that present education delivered in A class is unsuccessful in providing misconception, although B class gives more reasonable answers in as much as to A class it includes missing and conceptual change texts used in this group are insufficient alone. It can be stressed that D and C classes are more successful in providing misconception than the other groups. As a result of the comparing the answers, most of the students in D class, in which all education materials are used together, give scientific and reasonable answers. For this reason, it can be said that education materials applied to D class are the most successful in providing misconception.

References

- Artun, H. & Coştu, B. (2011). Unveiling primary student-teachers' misconceptions about diffusion and osmosis. *Journal of Turkish Science Education*, 8 (4), 117–127.
- Artun, H. & Coştu, B. (2013). Effect of the 5E model on prospective teachers' conceptual understanding of diffusion and osmosis: A mixed method approach. *Journal of Science Education and Technology*, 22 (1), 1–10.
- 3. Artun, H. (2009). Developing and evaluating of teaching material concerning diffusion and osmosis concepts based on 5E model. *Master's Thesis*, KTU, Trabzon.
- 4. Barman, C. R. & Miller, J. A. (1996). Two teaching methods and students' understanding of sound. *School Science and Mathematics*. 2, 63-67.
- 5. Beaty, W. J. (2000). Children's Misconsepts about Science-A list compiled by the AIP Operation Physics Project [on line: <u>http://www.amasci.com/miscon/opphys.html</u>]. 13 May 2008.
- 6. Bayar, F. (2005). Developing activities based on constructivist learning theory about the unit called 'heat and the travel of the travel of heat' 5th class students. *Master's Thesis*, KTU, Trabzon.
- 7. Cahyadi, V. (2004). The effect of interactive engagement teaching on student understanding of introductory physics at the faculty of engineering, University of Surabaya, Indonesia. *Higher Education Research and Development*, 23(4), 455–464.
- 8. Chambers, S. K. & Andre, T. (1997). Gender, prior knowledge, interest, and experience in electricity and conceptual change text manipulations in learning about direct current. *Journal of Research in Science Teaching*, 34(2), 107–123.

- 9. Coştu, B. & Ünal, S. (2004). The use of worksheets in teaching Le-Chatelier's principle. *Yuzuncu Yıl University Elektronik Journal of Faculty Education*, 1–10.
- 10. Çakır, Ö. S., Uzuntiryaki, E. & Geban, Ö. (2002). Contribution of conceptual change texts and concept mapping to students' understanding of acids and bases. *Paper Presented at The Annual Meeting of The National Association For Research in Science Teaching*, New Orleans, LA.
- 11. Çalık, M., Okur, M. & Taylor, N. (2010). A comparison of different conceptual change pedagogies employed within the topic. *Journal of Science Education and Technology*, 21, 669–685.
- 12. Çalık, M. (2006). Devising and implementing guide materials related to solution chemistry topic in Grade 9 based on constructivist learning theory. *Doctoral Thesis*, KTU, Trabzon.
- 13. Çaycı, B. (2007). The effect of conceptual change texts on the concept learning. *Gazi University Journal of Gazi Educational Faculty*, 27(1), 87-102.
- 14. Çepni, S., Taş, E. & Köse, S. (2006). The effects of computer-assisted material on students' cognitive levels, misconceptions and attitudes towards science. *Computer and Education*, 46(2), 192–205.
- 15. Çepni, S. (2010). *Introduction to research and project studies*. Fifth Edition, Celepler Publishment, Trabzon.
- 16. Demirci, N. & Efe, S. (2007). Determination of primary school student's misconceptions about sound subject. *Necatibey Faculty of Education Electronic Journal of Science and Mathematics Education*, 1(1), 23–56.
- 17. Diakidoy, I. N., Kendeou, P. & Ioannides, C. (2003). Reading about energy: The effects of text structure in science learning and conceptual change. *Contemporary Educational Psychology*, 28, 335–356.
- 18. Driver, R., Sguires, A., Rushworth, P. & Wood-Robins, V. (1994). *Making sense of secondary science: Research into children's ideas*. Routledge. London.
- 19. Eshach, H. & Schwartz, J.L. (2006). Sound stuff? Naive materialism in middleschool students' conceptions of sound. *International Journal Science Education*, 28,733–764.
- 20. Friedler, Y., Merin, O. & Tamir, P. (1992). Problem-solving inquiry-oriented biology tasks integrating practical laboratory and computer. *Journal of Computers in Mathematics and Science Teaching*, 11(3), 347–57.
- 21. Hapkiewicz, A. (1992). *Finding a list of science misconception*. MSTA Newsletter, 38, 11-14.
- 22. Hapkiewics, A. & Hapkiewics, W. (1993). *Misconceptions in science. Paper presented at National Science Teachers Association regional meeting*. Denver, CO.

- 23. Huddle, P. A., White, M. W. & Rogers, F. (2000). Simulations for teaching chemical equilibrium. *Journal of Chemical Education*, 77(7), 920–926.
- 24. Hrepic, Z. (1998). Students' conceptions in understanding of sound. *Bachelor's Thesis*, University of Split, Croatia.
- 25. Hrepic, Z. (2004). *Development of real-time assessment of students' mental models of sound propagation*. University of Split, Split, Croatia.
- 26. Geban, Ö. & Bayır, G. (2000). Effect of conceptual change approach on students' understanding of chemical change and conversation of matter. *Journal of Hacettepe University Faculty of Education*, 19, 79-84.
- 27. Kör, A. S. (2006). Effects of materials developed according to the constructivist learning approach in removal of conceptual errors seen in unit 'electricity in our life' by 5th grade students in primary school. *Master's Thesis*, KTU, Trabzon.
- 28. Linder, C. J. (1993). University physics students 'conceptualizations of factors affecting the speed of sound propagation. *International Journal of Science Education*, 15(6), 655 666.
- 29. Linder, C. J. & Erickson, G. L. (1989). A study of tertiary physics students' conceptualizations of sound. *International Journal of Science Education*, 11, 491–501.
- 30. Maurines, L. (1993). Spontaneous reasoning on the propagation of sound. In J. Novak (Ed.), *Proceedings of the Third International Seminar on Misconceptions and Educational Strategies in Science and Mathematics*. Ithaca, NY: Cornell University (distributed electronically).
- Merino, M. J. (1998a). Complexity of pitch and timbre concepts. *Physics Education*, 33(2), 1105–109.
- 32. Merino, M. J. (1998b). Some difficulties in teaching the properties of sounds. *Physics Education*, 33(2), 101–104.
- 33. Nottis, K. E. K. & McFarland, J. (2001). A comparative analysis of pre-service teacher analogies generated for process and structure concepts. *Electronic Journal of Science Education* (EJSE), 5(4).
- 34. Okur, M. (2009). A comparison of different conceptual change methods: A sample for "sound propagation" topic. *Master's Thesis*, KTU, Trabzon.
- 35. Özmen, H. & Yıldırım N. (2005). Effect of work sheets on student's success: Acids and bases sample. *Journal of Turkish Science Education*, 2(2), 124–143.
- 36. Özmen, H. & Kolomuç, A. (2004). Effect of computer-based teaching on student achievement in solution concept. *Gazi Üniversity Journal of Gazi Educational Faculty*, 12(1), 57–68.
- 37. Saka, A. & Akdeniz, A.R. (2006). The development of computer based material about genetic and application according to 5e model. *The Turkish Online Journal of Educational Technology*, 5(1).

- 38. Saka, A. & Yılmaz, M. (2005). Material development and application based on study sheets in computer assisted physics education. *Turkish Online Journal of educational Technology*, 4(3).
- 39. Toluk, Z. & Olkun, S. (2004). *Activity Based Mathematics Education*: Teaching for Conception, Good Models Congress for Education, Sabanci University, İstanbul.
- 40. Tsai, C.C. (1999). Overcoming junior high school students' misconceptions about microscopic views of phase change: a study of an analogy activity. *Journal of Science Education and Technology*, 8(1), 83–91.
- 41. Uzuntiryaki, E. & Geban, Ö. (1998). Conceptual change texts in teaching primary 8th class solution topic and using conceptual maps. *III. National Science Education Symposium*, Trabzon.
- 42. Ünal, S. (2007). A new approach on teaching of chemical bonds and intermolecular forces: The effects of CAI and CCT on conceptual change, *Doctoral Thesis*, KTU, Trabzon.
- 43. Yaman, F., Demircioğlu, G. & Ayas, A. (2006). Effects of developed activities on student's understandings of acid and alkali concepts. *7. National Science and Mathematics Education Congress*, Ankara.
- 44. Yıldırım, A. & Şimşek, H. (2000). *Qualitative research methods in social sciences*, 2. Edition, Seckin Publishment, Ankara.

Creative Commons licensing terms

Author(s) will retain the copyright of their published articles agreeing that a Creative Commons Attribution 4.0 International License (CC BY 4.0) terms will be applied to their work. Under the terms of this license, no permission is required from the author(s) or publisher for members of the community to copy, distribute, transmit or adapt the article content, providing a proper, prominent and unambiguous attribution to the authors in a manner that makes clear that the materials are being reused under permission of a Creative Commons License. Views, opinions and conclusions expressed in this research article are views, opinions and conclusions of the author(s). Open Access Publishing Group and European Journal of Education Studies shall not be responsible or answerable for any loss, damage or liability caused in relation to/arising out of conflicts of interest, copyright violations and inappropriate or inaccurate use of any kind content related or integrated into the research work. All the published works are meeting the Open Access Publishing requirements and can be freely accessed, shared, modified, distributed and used in educational, commercial and non-commercial purposes under a <u>Creative Commons Attribution 4.0 International License (CC BY 4.0)</u>.