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Abstract: 

This paper aims to highlight two historical parabolographs and a third one that is at the 

design level and to prove the equivalence of the respective definitions of parabola they 

contain. Specifically, using the Geogebra math software, each mechanism is attempted to 

articulate another, so that by moving the cursor of the original mechanism to the common 

output of the two articulated mechanisms, the same parabola is drawn. This proves the 

equivalence of definitions of parabolic curve as well as of suitably articulated 

mathematical machines. 
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1. Introduction 

 

The mathematical instrument was a clearly defined category of scientific instruments, 

common in academic, artisanal, and commercial contexts, and its development from the 

16th to the 18th century was largely independent of other instrument categories, during 

a period when a "scientific instrument" was unheard of (Bennett, 2011). This article 

describes two historical parabolographs, specifically those of Bonaventura Cavalieri 

(1632) and Frans van Schooten (1646), as well as a parabolograph designed 

monographically by Bergsten within a dynamic geometry software environment, 

presenting a challenge in mechanical construction.  

 They are “equivalent mechanisms” consisting of properly articulated rods and 

carrying out a certain level of pointwise geometric transformation. Each mechanism 
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incorporates a different definition of the parabola and is mechanically equivalent to the 

others. Their mechanical design doesn't focus on speeds, frictions, stability, and wear of 

each mechanism, but only on transferring motion from the "input" to the "output" and on 

the way the rods are articulated. Furthermore, the design is "monolinear" and in a 

dynamic geometric environment, because in simple mechanisms, with the help of 

monolinear design, the way of construction, articulation, and functioning (mobility) of 

the mechanism becomes understandable. 

  The aim of the article is to confirm the equivalence of the specific definitions of the 

parabola through the “mechanical emergence" of each mechanism within the structure of 

the other, both precisely tracing the same parabola. Furthermore, the aim includes the 

educational use of mathematical machines to highlight mathematical concepts through 

the design and composition of these mechanisms. 

 

2. Bonaventura Cavalieri mechanism 

 

Bonaventura Francesco Cavalieri (1598 to 1647) was an Italian Jesuat mathematician 

known for his work on problems in Optics and Motion, as well as for the "Cavalieri's 

principle," which laid the foundations for integral calculus. In his first book studied 

mirrors (Cavalieri, 1632). He describes his parabolograph in Chapter XLV, page 187, with 

the translated title "How the parabolic curve is described through solid instruments, which 

consist of rules, being the second method in the plane”. The idea behind the construction of 

the mechanism originates from Proposition II.14 and Proposition VI.8 of the Elements.  

 The three right triangles ARL, RLK, and AKR are similar because the following 

comparisons can be made: Angle RAL=angle LRK = ϕ, as acute angles with perpendicular 

sides, and angle LRA=angle LKR=90°-ϕ=ω (Figure 1). Therefore, the following proportion 

arises: 

 

 
RL

LK
=

AL

RL
⇔ RL2 = AL ⋅ LK ⇔

RL2

AL
= LK  

 

 From the equation, it is evident that the continuous curve traced by the stylus of 

point R is a parabola with vertex A, axis of symmetry AM, and "latus rectum" equal to 

the length of segment LK. The semi-line AK (Figure 3) becomes a diameter passing 

through the vertex A of each parabolic arc RAQ and bisecting every parallel chord RQ 

according to Proposition 14. Thus, for every position of R, as the cursor LK moves, the 

ratio of the square of the distance RL to the corresponding distance AL is always equal to 

the fixed length of the dragging rod LK. By placing the center of the orthonormal 

coordinate system at point A of the mechanism plane and considering the vertical axis 

y'y, which coincides with the line passing through the sliding groove, an attempt will be 

made to describe the machine algebraically (Figure 1). Furthermore, by defining (x, y) as 

the coordinates of point R and c as the length of segment LK, the relationship obtained 

from the geometric reference framework is transformed for the simple Cavalieri's 

Parabolograph as follows: 
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𝑅𝐿2

𝐴𝐿
= 𝐿𝐾 ⇒

𝑥2

−𝑦
= 𝑐 ⇒ 𝑥2 = −𝑐𝑦 ⇒ |𝑥| = √−𝑐𝑦 ⇒

𝑥>0
𝑥 = √−𝑐𝑦  

 

 The point 𝑅(𝑥, 𝑦) = 𝑅(√−𝑐𝑦, 𝑦), and during the operation of this "guiding 

mechanism," a planar pointwise geometric transformation is performed, given by 

𝐿(0, 𝑦) → 𝑅(√−𝑐𝑦, 𝑦) which is also normal and invertible transformation (Pneumatikos, 

1974). 

 

 
Figure 1: Analysis of simple and complex Cavalieri’s parabolograph 

(https://www.geogebra.org/m/znqdkzsp). 

 

3. Frans van Schooten mechanism 

 

Frans van Schooten (1615-1660) played an important role in disseminating the 

mathematical methods of Descartes. He achieved this by publishing a Latin translation 

of "Geometrie" in 1649 with his own comments and explanatory notes, along with related 

texts from other mathematicians. In 1659, he released a second edition with additional 

comments and texts. In the notes for the 1649 edition, van Schooten emphasizes the 

importance of Descartes constructions. Cajori (1893) and Malet (1996) report that van 

Schooten advised his students, particularly Huygens, to study Cavalieri's theory of 

"indivisibles."  

 Van Schooten (1646) correlates the results of the Greek theory on conic sections 

with his own ideas for drawing curves using motion, as well as constructing 

corresponding instruments. He explains that the main goal is to describe conic sections 

in the plane with the aid of motion. According to van Schooten, the precise design of 

conic sections necessitates incorporating motion. Moreover, a deeper understanding of 

conic sections was useful in practical applications of mathematics, such as studying and 

constructing dioptras and catoptrics. Therefore, he delved into the construction of tools 

for accurate conic section design, which he classified as part of his "Mechanics" to 

distinguish it from his "Mathematics". The first four chapters of his work deal with the 

conceptual design of curves, while the remaining ten chapters focus on the construction 

and use of instruments, providing details on construction techniques, materials, and 

especially the "transfer of motion" from one part of the instrument to another (Dopper, 

2014). 

 The operation of this parabolograph is based on the "equidistant" definition of the 

parabola, as usually is introduced in upper secondary education today (Figure 2).  
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Figure 2: Frans van Schooten’s parabolograph 

 

 Additionally, the property of the rod FHDK as a tangent line to the traced curve 

highlights a potential field of slopes for point D (Milici, Plantevin & Salvi, 2022). Triangles 

BHD and GHD are equal, having HD as a common side, BH and GH as equal sides of the 

rhombus, and their included angles equal as supplements of the equal angles created by 

the diagonal and bisector FH of the rhombus. Consequently, the opposite sides DB and 

DG are equal. Let E be the projection of point B onto the line QR. By placing a Cartesian 

coordinate system at E of the line QR, with the horizontal axis x'x along the line QR, an 

attempt will be made to describe the situation algebraically. Applying the Pythagorean 

Theorem to triangle BCD (Figure 3), we obtain: 

 
BD2 = BC2 + CD2 ⇒ ⋯ ⇒ CD2 = 2DG · BE − BE2 ⇒ |x|2 = 2(−y) · p − p2 ⇒  

x2 = −2py − p2 ⇒ 2py = −x2 − p2 ⇒ y =
−1

2p
x2 −

p

2
  

 

and we now have the algebraic equation of the parabolic curve traced by the machine 

according to the chosen Cartesian coordinate system. Furthermore, the form of the 

equation demonstrates its symmetric result with respect to the y'y axis. This "1-1" 

mechanical input and output, or this “1-1” point-wise geometric transformation of the 

points on the horizontal line QR into points on the parabola, is captured algebraically  

as  

 

G(x, 0) → D (x,
−1

2p
x2 −

p

2
)  

 

which is a reversible mapping R2 → R2 (Pneumatikos, 1974). 

 

 
Figure 3: From the "equidistant property" of parabola highlighting the relevant parabolograph 
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4. Pythagoras mechanism 

 

Christer Bergsten (2015) describes the digital construction of a parabola in a dynamic 

geometry digital environment, with multiple extensions and applications in the concept 

and teaching of parabolas. The mechanical construction of this complex mechanism is 

still in progress and will be presented later, based on the Pythagorean theory of the 

"parabola" of an equivalent parallelogram (given an angle and a side) with another 

parallelogram. During its operation, an equivalent square continuously appears within 

an existing rectangle, while a parabolic arc is simultaneously traced.  

 The construction of a rectangle with a known side which is equivalent to a square 

of known sides is carried out according to “Thales” theorem, and according to 

Propositions I.42 and I.44. But the construction and application of a square with a 

rectangle of known sides is constructing by Propositions II.14 and VI.8. In Proposition 

I.43 it is stated that the "complements" of the diagonal of every parallelogram are 

equivalent (Figure 4). In Proposition I.42, the construction of a parallelogram equivalent 

to a given triangle is described. Then, in Proposition I.44, the construction of a new 

equivalent parallelogram is described, of which one side and one angle are known, and 

it is equivalent to the previous parallelogram. In other words, from a convex planar 

shape, an equivalent parallelogram is "constructed" (given an angle and a side), using 

simple means, and it must be "applied" to a specific segment with a specific angle at one 

of its ends.  

 

 
Figure 4: Proposition I.43 of Euclid΄s Elements and "complements" of α parallelogram 

 

 As Proclus states (5th century AD), "Eudemus of Rhodes (4th century BC) 

attributed to the Pythagoreans the following: When an equivalent parallelogram is 

applied, then we have a simple “parabola” of an area and not just the construction of a 

equivalent area. When a parallelogram of smaller area by one square is applied, we have 

a deficient “parabola” of an area, and when a parallelogram of larger area by one square 

is applied, we have an excessive “parabola” of an area. The theory of area application 

constitutes a very important topic in Greek Geometry and serves as a geometric method 

for solving mixed quadratic equations (Heath, 2001). It is noteworthy that in all these 

propositions, numerical values are not used, and thus algebraic relationships are derived 

through Geometry. Proclus states that Eudemus of Rhodes claims that "the simple 

application of areas, the application of areas by deficiency, and the application of areas by excess 

are discoveries of the Pythagoreans”. Subsequent mathematicians adopted these names to 
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use them for the flat curves that resulted from the intersection of cones or cylinders. This 

mathematical apparatus which could also be considered as an "area measurer" and it will 

be referred to as the "Pythagoras mechanism". 

 

4.1. The simple Pythagoras mechanism 

The fixed and immovable rod AB is articulated vertically with the rods AD and BG (AD 

= BG) (Figure 5). Points E and H on AB and AΔ respectively are equidistant from A and 

H due to the placement of a 45° articulation at H, allowing only sliding motion on rod 

AD (prismatic joint). The rod EZ is articulated at a 90° angle and prismatically attached 

to AB, allowing it to slide while maintaining its perpendicularity. Rod KZH is vertically 

articulated at points K, Z, and H, and it is also prismatically attached to the corresponding 

rods at these points. Additionally, the diagonal rod AK of the rectangular ABHK is 

articulated both rotationally and prismatically at A and K. At the intersection point Ω of 

the side of square AEZH and the diagonal AK, a stylus has been articulated rotatably and 

prismatic. The side AH of square AEZH plays the role of an independent variable, as 

point A is fixed, and point H (input of the mechanism) slides on rod AΔH. Its movement 

activates the entire mechanism, simultaneously moving the rods EΩZ, HZK, and AΩK 

parallel to their initial positions, thus tracing a curve from the stylus to point Ω. In each 

position of cursor H, the variable (in terms of its dimensions) square AEZH is equivalent 

to the variable rectangle ΑΒΓΔ (with a fixed side AB and an imaginary side ΓΩΔ) due to 

diagonal ΑΩΚ in rectangle BAHK. In other words, "the square of the variable number 

(AH) is equal to the product of the variable number (ΑΔ) and the fixed number (AB)." By 

suitably introducing a Cartesian coordinate system at point A, with line ΑΔΗ as the x'x 

axis and line AB as the y'y axis, the algebraic equation for the coordinates of point Ω (x, 

y) is derived as 𝑥2 = (𝐴𝐵) ∙ 𝑦, representing a parabola in an algebraic framework 

(register) with "latus rectum" equal to (AB). Moreover, in the special case where (AB) = 1, 

it serves as a mathematical mechanism for extracting square roots (de-squaring 

mechanism). 

 

 
Figure 5: Synthesis & analysis of simple “Pythagoras” parabolograph 

(https://www.geogebra.org/m/uhdzghyu) 

 

4.2. The complex Pythagoras mechanism 

This mechanism also includes the symmetrical part of the previous mechanism 

concerning the axis of sliding of the cursor H (Figure 6). Specifically, in the extension of 
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BA by the same length AB', a rod is hinged vertically to B' with the ability to slide on 

BAB'. At the cursor H is hinged a rod HE' perpendicular to HE with a prismatic joint on 

H and on this rod as well as a prismatic joint in E΄ of ΒΒ΄. This results in the isosceles right 

triangle HAE', which is equal to triangle HAE for any position of points H and H'. The 

extension of KH is articulated perpendicularly and prismatically at K' of Β’Γ’, and the 

perpendicular of BB' at E' is articulated perpendicularly (prismatically on B'B'). It is then 

articulated perpendicularly and prismatically at Z' of KK'. Finally, at the fixed-point A, 

the diagonal of the rectangle AHK'B' is articulated rotationally which is articulated 

rotationally and prismatically at point K'. This diagonal is also articulated prismatically 

at point 𝛺’on the side E'Z' of the square AHZ'E’, where a stylus is also placed.  

 By moving the cursor H, the parabolic arc ZAZ' is traced. For any position of point 

H, the angle ΑΗΕ = 45ο due to the joint, and quadrilateral AHEZ is a square. Rods HE and 

H'E' are always perpendicular to each other due to the joints, and quadrilateral ΑΕ′Ζ′Η is 

also a square, equal to AEZH and symmetric with respect to rod AH. The axial symmetry 

of the mechanism with respect to rod AH is evident, as well as the symmetry of the curves 

traced by the two stylus Ω and Ω΄. 

 

 
Figure 6: Synthesis of complex “Pythagoras” parabolograph 

(https://www.geogebra.org/m/vk4hawxy) 

 

 Furthermore, by continuously reducing the distance AH, it becomes apparent 

through the apparatus that at point A, the curve (although it may be difficult to meet the 

two points constructively) is "smooth" due to the "application" of the two squares at A, 

having collinear sides AE and AE', and, therefore, right angles at A, making A the vertex 

of the parabola and axis of symmetry the line AH. 

 

5. Mechanical confirmation of the parabola definitions equivalence 

 

The following is the process of proving the equivalence of the definitions on which the 

operation of these parabolographs is based in a mechanical environment. Specifically, 

assuming one of the three mechanisms given, there is an attempt, in a dynamic geometry 

environment, to articulate rods in a way that does not hinder the operation of the first 

mechanism and at the same time, the second mechanism also emerges, which works 

dependently and tracing exactly the same curve and without being able to use its "input", 

while its "output" is identified with the "output" of the first mechanism.  
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Figure 7: van Schooten and Cavalieri meeting (https://www.geogebra.org/m/nnjcunyv) 

 

5.1. From “van Schooten” to “Cavalieri” mechanism  

Starting from the van Schooten’s parabolograph due Pythagorean theorem, as well as 

from the definition of "equal distances" by Pappus (Heath, 2001), which is evidently 

included in its structure (Figure 8), it is derived:  
 

(FV)2 + (VD)2 = (DF)2 = (DG)2 ⇔ [(AV) − (AF)]2 + (VD)2 = (EV)2 = [(AV) + (AΕ)]2 ⇔ (AV)2 −
2(AV)(AF) + (AF)2 + (VD)2 = (AV)2 + 2(AV)(AF) + (AF)2 ⇔ (VD)2 = 4(AV)(AF) = (AV) ∙

4(AF) = (AV) ∙ 2(EF) = (AV) ∙ 2(VU) ⇔ (VD)2 = (AV) ∙ 2(VU) ⇔
(VD)2

(AV)
= 2(VU)  

 

and that is the equation of parabola according to Apollonius (Stamatis, 1975). A 

characteristic property of the tangent line at each point D of the parabola is to form a 

"subnormal" VU that is equal to its "semi-latus rectum". Therefore, the "normal" DU 

defines the "subnormal" VU, which is equal to the " semi latus rectum " p, that is, the 

distance (FE). Thus: (VD)2 = (AV) ∙ 2p = (AV) ∙  "latus rectum" = (TV) ∙ "semi-latus 

rectum" or equivalently, the square of side equal to the "ordinate" (according to 

Apollonius) VD, is equivalent to the rectangle of sides equal with "semi-latus rectum" 

EF=VU and the "sub-subtangent" TV=2AV. The constant squaring is evident from the van 

Schooten parabolograph, of the rectangle with these specific sides for any position of the 

cursor G. 
 

 
Figure 8: From “van Schooten” to “Cavalieri” parabolograph 

(https://www.geogebra.org/m/vuabfkjr) 
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 Mechanically, by assembling on the van Schooten mechanism at V, a prismatically 

articulated (on the rod EF) rod VK with length of a "latus rectum," where at K and A, two 

rods are articulated rotatably and prismatically, which then articulate rotationally at D of 

the van Schooten parabolograph. The van Schooten parabolograph (through its structure) 

consistently produces the relation (VD)2 = (AV) ∙ 2(VU) or equivalently, in any position 

of the cursor G, (VD)2 = (AV) ∙ (VΚ). The linking for the Cavalieri parabolograph, which 

is emerged from the van Schooten one, does not require a priori orthogonally articulating 

the rods DA and DK at D because orthogonality arises through the relation (VD)2 = (AV) ∙

(VΚ), which defines a right angle at D according to the first lemma of Pappus regarding 

the fifth Book of Apollonius (Stamatis, E. 1976, p. 157). Also, in the mechanism of van 

Schooten, the diagonal rod DT of the rhombus has the direction of the tangent line at D 

of the drawn parabola, and the characteristic property of the "subcanonical" VU is that it 

is equal to a “semi-latus rectum” for every position of D. Thus, the way to attach the 

tangent line to every point D emerges for the Cavalieri mechanism as well. It suffices to 

articulate, in a rotating and sliding manner, a rod connecting point D with the midpoint 

U of the (fixed length equal to the "latus rectum") rod VK, and then to articulate at D a 

perpendicular rod with DU which implements the tangent to the parabola at D. 

 Finally, from the definition of the parabola through equal distances from a point 

and a line, the definition of Apollonius' parabola arises through the intersection of a cone 

by a plane parallel to its generator. 

 

5.2. From “Cavalieri” to “van Schooten” mechanism 

Starting from the Cavalieri parabolograph, the corresponding focus F and the directix (δ) 

are placed on the plane, knowing that the "latus rectum" of the parabola is equal to the 

length of segment VK (Figure 9). A parabola is constructed because for every position of 

point D, it results from the permanently right triangle ADK and according to Proposition 

VI.8 (Exarhakos, 2001). 

 
(VD)2 = (AV) ∙ (VΚ) ⇒ (VD)2 = 2(AV)(VU) = 2(AV)·(semi-latus rectum),  

 

where U is the midpoint of segment VK and trace of the "normal" DU.  

 

 
Figure 9: Start of construction of "van Schooten" through "Cavalieri" parabolograph 
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 However, this relationship constitutes the equivalent definition of the parabola 

according to Apollonius (Stamatis, 1975). In other words, the square of (DV) is equal to 

the product of (AV) multiplied by the "latus rectum". Similarly, the square of a side equal 

to VD is equivalent to the rectangle with sides "semi- latus rectum" EF=VU and AV. The 

continuous squaring of the rectangle with these specific sides is evident for any position 

of the cursor V. From the equation: 

 
(VD)2 = 2(AV) · 2(AF) = 4(AV)(AF)  

 

by adding a suitable quantity to both members, it follows that: 

 
(AV)2 + (AF)2 − 2(AV)(AF) + (VD)2 = (AV)2 + (AF)2 − 2(AV)(AF) + 4(AV)(AF) ⇔ 
[(AV) − (AF)]2 + (VD)2 = (AV)2 + (AF)2 + 2(AV)(AF) = [(AV) + (AF)]2 = 
[(AV) + (AΕ)]2 = (VE)2 ⇔ (FV)2 + (VD)2 = (VE)2 = (d (V, (δ))2 

 

 From the triangle FVD, it follows that (FV)2 + (VD)2 = (FD)2, and from the last 

two equations, 

 
(FD)2 = (VE)2 ⇒ (FD) = (VE) = (DG) ⇒ d(D, F) = d(D, (δ))  

 

meaning that any point D on the parabola traced by Cavalieri parabolograph, in addition 

to the fundamental property of the mechanism emerging Apollonius' definition, has the 

property of equal distances from the point F and the line (δ) that constitutes the definition 

of Pappus. Furthermore, from the characteristic property of the points on the 

perpendicular bisector of segment FG, to which D belongs, van Schooten mechanism 

gradually emerges. Point G is shifted onto line (δ), and point D belongs to the 

perpendicular bisector of the corresponding segment FG (due to the definition of 

equidistance) as well as the perpendicular line to line (δ) at point G. 

 The property of the perpendicular bisector is possessed by the diagonals of any 

rhombus, regardless of whether its angles change. For any position of point D in the 

Cavalieri mechanism, there exists an "invisible" rhombus that establishes the property of 

D belonging to the perpendicular bisector DT of FG (Figure 10). However, since the sides 

of the "invisible" rhombus FDGT change at each position of D, a real rhombus FHGB with 

FG as its imaginary diagonal is introduced into the Cavalieri mechanism. This rhombus 

has the other diagonal BH as the perpendicular bisector of FG and is collinear with the 

diagonal DT of the invisible rhombus FDGT. By the equality of triangles FGD and FTG,  

it follows that the fourth vertex of the "invisible" rhombus is T, and the diagonal DHBT 

is common to both rhombuses.  
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Figure 10: "van Schooten" through "Cavalieri" parabolograph,  

until its complete emergence (https://www.geogebra.org/m/dnskbeup) 

 

  According to the definition of the "normal" by Leibnitz (Dennis & Confrey, 1995), 

the tangent line at D of the parabola traced by the Cavalieri mechanism is perpendicular 

to the normal DU at D of the parabola, where U is the midpoint of segment VK. The 

tangent of the traced parabola also represents the diagonal line DT of both rhombi, and 

it has already been proven (Schooten, 1646) that this diagonal is the tangent at any point 

of the parabola traced by the "emerging" mechanism of Frans van Schooten. 

 Mechanically, to emerge the "van Schooten" mechanism from the "Cavalieri" 

mechanism and trace the exact same parabolic curve, the following steps are followed: 

(a) a rod is articulated at the midpoint U of the fixed-length rod VK and at point D, both 

prismatically and rotationally, (b) a sliding rod is placed on the directrix, (c) a 

permanently perpendicular rod DT is articulated rotationally and prismatically at D with 

respect to UD, (d) a rhombus is articulated rotationally at Focus F and prismatically and 

rotationally at G on the rod EG, (e) the rod DT is articulated prismatically with the 

vertices B and H of the rhombus, (f) a rod is articulated prismatically at points D and G, 

which is essentially perpendicular to the rod that represents the directrix. Therefore, from 

the definition of the of Apollonius, the iso-distant definition of the parabola is derived. 

Moreover, through this process, the Cavalieri parabolograph highlights the tangent of 

the parabolic arc traced at any point D. 

 

5.3. From “Pythagoras” to “Cavalieri” mechanism  

The complex Pythagoras mechanism can square two equal rectangular parallelograms 

with equal, constant, and co-linear sides AB and AB'. For successive values of the other 

sides BΓ and B'Γ', the diagonals AΓ and AΓ' intersect the sides of the equivalent squares 

AEΘΔ and AE'Θ'Δ, respectively, at points Ω and Ω', which, in addition to being 

symmetric with respect to the line AΔ, are also points of a parabola with “latus rectum” 

equal with (AB) (Figure 11). Due to the bisecting of ΩΩ' and its parallelism with BB', it 

follows, according to Proposition 5 of Book II of Apollonius (Stamatis, 1976), that the top 

diameter and vertex of the parabolic arc are AΔ and A respectively. Since the traced 

parabolic arc is symmetric with respect to the diameter AΔ, it follows that AΔ is the axis 
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of the parabola, and point A, in addition to being the vertex of the arc, is also the vertex 

of the corresponding parabola. 

 Articulated a rod on points Ω and Ω' and articulating it, the point H is defined on 

the axis of the parabola. By prismatically placing a rod HK on the axis of parabola with 

one end at H, with a length equal to the fixed side AB of the rectangle, and then 

articulating two rotating rods at points-stylus Ω and Ω' and rotating-prismatically with 

the other end K of HK, the double Cavalieri parabolograph is emerged. Indeed, the 

variable common side AH of the rectangles ABZH and AB'Z'H is collinear with the 

segment HK, for which (HK) = (AB) = "latus rectum" and the segments ΩH and Ω'H have 

a length equal to the side of the equal squares AEΘΔ and AE'Θ'Δ. Through the property 

of the diagonal of a parallelogram to define equal triangles (Proposition I.34), it is proven 

that the rectangle is equal to the rectangle, i.e., (ΑΕ)2 = (ΑΒ) ∙ (ΒΖ) ⇔ (ΗΩ)2 = (ΗΚ) ∙

(ΗΑ). According to the 1st lemma of Pappus, related to the 5th Book of Apollonius 

(Stamatis,1976), it is demonstrated that the triangles ΑΩΚ and ΑΩ'Κ are right triangles 

at Ω and Ω', respectively. Therefore, the perpendicularity of the rods of the double 

Cavalieri parabolograph at points Ω and Ω' is imposed by the Pythagoras parabolograph, 

and there is no need for right-angle joints at these points. 
 

 
Figure 11: Cavalieri through Pythagoras parabolograph 

(https://www.geogebra.org/m/qhwpxyvp) 

 

 It has already been proven that for an arbitrary point on the parabola, the segment 

connecting the Focus and the projection of that point onto the directrix is bisected 

perpendicularly by the tangent at that point, or conversely, the perpendicular bisector to 

this segment tangentially touches the respective point on the parabola (Ntontos, 2019). 

By constructing the Focus F and the directrix (δ), and based on this property, the equality 

of triangles FAM and MEΣ is proven, resulting in the point M, where the tangent at Ω 

intersects the tangent at vertex A of the parabola, always being the midpoint of the 

segment AE, where E is the projection of point Ω onto the tangent BB'. Therefore, the 

midpoints M and M' of segments AE and AE' are sufficient to construct tangents at points 

Ω and Ω' of the parabola (Figure 12). For the tangent line to be articulated at (moving) 

point Ω of the “Pythagoras” mechanism's parabola, Ω must be connected to the midpoint 

of AE, as the positions of Ω and E are continuously changing. It is sufficient to extend the 
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rod ΘΕ of the square AEΘΔ and articulate it prismatically at point Σ of the fixed rod (δ). 

Then, using the "imaginary" diagonal FΣ, the “van Schooten rhombus” is articulated, 

where the diagonal rod ΩΤ will be the tangent line at point Ω of the parabolic curve. 

Through this addition, the tangent line at every point Ω and Ω’ of Pythagoras 

parabolograph can also be articulated. It has been proven for every parabola that it 

constitutes the "iso-subnormal" curve, and the right-angled triangle NΩΗ (of the normal 

NΩ and subnormal NH) are always equal with the right-angled triangle FPΣ (Figure 11). 

This permanent equality of triangles makes N the midpoint of rod ΗΚ, which has a length 

equal to the latus rectum ΑΒ of the traced parabola. Therefore, the medians ΩΝ and Ω'Ν 

of triangles ΩΗΚ and Ω'ΗΚ are the "normal" lines at points Ω and Ω’ of the parabola, 

and therefore are perpendicular to the corresponding tangent lines. By already placing 

the tangent rods at points Ω and Ω’ and with the mediation of the van Schooten rhombus, 

the medians ΩΝ and Ω'Ν are always perpendicular to the already tangent lines at Ω and 

Ω’ without the appropriate articulation of a "right angle". 

 

 
Figure 12: Appearance of the tangent to the traced parabola 

(https://www.geogebra.org/m/qhwpxyvp) 

 

  Ultimately, starting from the complex Pythagoras parabolograph of and 

articulating rods properly, and with the mediation of the “van Schooten parabolograph 

rhombus”, the Cavalieri parabolograph emerges mechanically along with its tangent line. 

From definition of parabola as an equivalent square transformed into a rectangular 

parallelogram with one fixed side, the definition of Apollonius parabola is derived. 

 

5.4. From “Cavalieri” to “Pythagoras” mechanism 

In double Cavalieri parabolograph, rod BB' with a length twice of the "latus rectum" HK 

is placed perpendicular to the axis AK, with the vertex A of the mechanism as its 

midpoint (Figure 13). Then, perpendicular rods with BB’ are articulated at points B and 

B', intersecting rod ΩΩ' of the mechanism at points Z and Z', where they are articulated 

prismatically. Furthermore, the perpendicular rods BZ and B'Z' are articulated 

prismatically and rotationally at points Γ and Γ' with the rods ΑΩ and ΑΩ' of the 

Cavalieri parabolograph. Due the equality of triangles ΑΒΓ and ΑΒ'Γ' and through the 
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inverse theorem of Thales, the rod ΓΓ' articulated at points Γ and Γ' is parallel to rods ZZ' 

and BB' (Figure 13). The segments ΑΓ and ΑΓ' are diagonals of the parallelograms ΑΒΓΔ 

and ΑΒ'Γ'Δ and divide them into equal triangles. Joining rods at points Ω and Ω' parallel 

to the sliding axis of the Cavalieri parabolograph, rectangles AEΩH and AE'Ω'H are also 

divided into equal triangles, just like rectangles ZΩΘΓ and Z'Ω'Θ'Γ. Therefore, rectangles 

BEZΩ and B'E'Ω'Z' are equivalent to rectangles ΩΘΔΗ and Ω'Θ'ΔΗ, respectively. It is 

evident that (ABZH) = (AEΘΔ) = (AB'Z'H) = (AE'Θ'Δ), meaning (AB)(BΖ) = (AE)(EΘ) = 

(AB')(B'Z') = (AE')(E'Θ') (∗). In the double Cavalieri parabolograph, according to 

Proposition VI.8, it follows that (ΗΩ)2 = (ΗΩ′)2 = (ΑΗ)(ΗΚ) ⇒ (ΑΕ)2 = (ΑΕ′)2 =

(ΒΖ)(ΑΒ) = (Β′Ζ′)(ΑΒ′) (∗∗). From the relationships (∗) and (∗∗) it follows that 

(ΑΕ)(ΕΘ) = (ΑΕ)2and (ΑΕ’)(Ε’Θ’) = (ΑΕ′)2. Consequently, (AE) = (EΘ) and (AE') = (E'Θ'), 

which means that the rectangles AEΘΔ and AE'Θ'Δ are squares, and due to (∗) the 

rectangles ABZH and AB'Z'H are "squared" as well. Therefore, the Pythagoras 

parabolograph, which "applies" an equivalent square to a rectangle of fixed side, and 

simultaneously the points Ω and Ω' trace the same parabola already drawn by the 

original double Cavalieri parabolograph. By moving the cursor H of Cavalieri 

parabolograph, the parabola is traced by the stylus at Ω and Ω', and the cursor Δ of the 

mechanism follows, just Pythagoras mechanism. 

 

 
Figure 13: "Pythagoras" from "Cavalieri" parabolograph 

(https://www.geogebra.org/m/pxdfgkvr) 

 

  Regarding the tangent line at points Ω and Ω' of the parabolic curve, which is 

simultaneously traced by both mechanisms, the "normal" lines NΩ and NΩ’ (medians of 

triangles ΩHK and Ω'HK) in Cavalieri parabolograph define the tangent straight lines at 

points Ω and Ω' of the parabola, which are traced by both mechanisms. These tangent 

lines must pass through the midpoints of the variable segments AE and AE' without the 

mediation for van Schooten's rhombus (Ntontos, 2019), thanks to the right-angled joints 

of the tangent lines at points Ω and Ω' of the parabolic curve. 

 Ultimately, starting from the double Cavalieri parabolograph and suitably 

connecting certain rods, the mechanical construction of the complex Pythagoras 

parabolograph emerges along with its tangent at the point-stylus. From the definition of 

“Apollonius parabola”, the Pythagorean definition of parabola is deduced. 
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5.5. From “Pythagoras” to “van Schooten” mechanism 

In the Pythagoras mechanism, the rods connecting points Ω and Ω' with the midpoints 

M and M' of the segments AE and AE', respectively, constitute the corresponding tangent 

lines. However, to attach them to the mechanism, the focus F and the directrix (δ) must 

be positioned, knowing already that the "latus rectum" of parabola has the same length 

as the fixed rod AB of the mechanism. Next, the rod ΩE must be extended by a distance 

equal to (AF) and hinged prismatically at point Σ of the directrix (δ) (Figure 14). 

Additionally, the perpendicular bisector of the imaginary segment FΣ must be positioned 

for any position of the moving points Ω and Σ. This can be achieved by connecting a 

rhombus at points F and Σ, and then attaching a straight rod to the other two vertices.  

 The flexibility of the rhombus ensures that it remains unchanged in terms of the 

properties of its diagonals, as the cursor Δ of the Pythagoras mechanism moves and point 

Σ moves along the directrix (δ). Τhe vertex F rotates on itself, the diagonal ΩT is 

perpendicular bisector to the imaginary diagonal FΣ, and the equality of triangles FAM 

and ΣEM permanently makes the variable segments AM and ME equal. At last, the 

construction of van Schooten parabolograph was revealed, which is based on the 

definition of equal distances by Pappus. To trace the left branch of the parabola and by 

van Schooten mechanism, one only needs to follow the same process. 

 

 
Figure 14: "van Schooten" from "Pythagoras" parabolograph 

(https://www.geogebra.org/m/s4fjekn8) 

 

 Finally, starting from the complex Pythagoras parabolograph and suitably 

articulating some rods, we obtain the Frans van Schooten parabolograph, which follows 

the movement of the first one as the cursor Δ of Pythagoras moves. By following the 

movement of its cursors Σ and Σ', it produces the same output-stylus, thus tracing the 

same parabolic curve. In other words, from the Pythagorean definition of the parabola-

application of an equivalent square in a rectangular parallelogram with one side fixed, 

the equidistant definition of Pappus arises. 

 

5.6. From “van Schooten” to “Pythagoras” mechanism 

In the midpoint A of distance FE from Focus F to the directrix (δ) of the parabolograph 

van Schooten, a straight rod parallel to the directrix is placed. Then, with center A and a 

radius twice the distance FE = "semi-latus rectum" points B and B' are selected on the rod 

(Figure 15). Perpendicular rods with BB’ are placed at points B and B', and an oblique rod 
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hinged rotationally at fixed point A and rotationally prismatically at stylus D of diagonal 

DT, which hinges rotationally-prismatically at point Γ on the perpendicular BB' at B. A 

rod perpendicular to the axis of the parabola is hinged at point Γ, which is hinged 

prismatically at point Γ' with the perpendicular rod at B' of BB'. Through appropriate 

joints, the segment added to the van Schooten mechanism follow its motion. According 

to Proposition I.43 of Euclid's Elements, for any position of cursor G, the rectangle ABZK 

is equivalent to the rectangle AΛΘΔ. It has been shown that in the van Schooten 

parabolograph, for any position of point D, the metric relationship holds: (DK)2 = 2(FE) ∙

(ΑΚ) = 2(FE) ∙ (DΛ). Therefore, (DK)2 = latus rectum ∙ (ΒΖ) = (ΑΒ) ∙ (ΒΖ) which implies 

that the rectangle ABZK is equivalent and with a square side of DK = ΘΔ = ΑΛ. 

Consequently, the rectangle AΛΘΔ must be α square equivalent to rectangle ABZK and 

"applied" on side AB and angle A for any position of cursor G. In other words, stylus D 

traces a parabolic arc while simultaneously revealing the side of a square equivalent to a 

rectangle with sides equal to the “latus rectum” and the distance of D from the parabola's 

tangent at its vertex.  

 

 
Figure 15: "Pythagoras" from "van Schooten" parabolograph 

(https://www.geogebra.org/m/cuqs8vks) 

 

  Finally, starting from the van Schooten parabolograph and properly articulating 

some rods, the Pythagoras parabolograph emerges, which follows the motion of the first 

one as the cursor G of van Schooten moves, the cursor D of Pythagoras follows the same 

output-stylus and traces the same parabolic curve. In other words, from the equidistant 

definition of Pappus, the Pythagorean definition of the parabola-application of an 

equivalent square on a parallelogram with one of its sides fixed is derived. 

 

6. Conclusion 

 

In this article, three parabolographs were initially presented, each constructed based on 

a different definition of the parabola. Then, by composing each mechanism on another 

without hindering with the operation of the first, their mechanical equivalence is 

confirmed as well as the equivalence of the corresponding definitions of the parabola. 

 According to the theory of semiotic mediation, the exploration of a machine should 

start from a physical manipulation and then progress to a conceptual and mathematical 

understanding of the artifact. It is then proposed in this paper that with a basic 
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knowledge of engineering design and the use of dynamic geometry software, the reverse 

process of designing and synthesizing each parabolograph on top of another one can be 

implemented so that the operation of the first one is not hindered by the second one 

following it and they have the same result in their common output. 

 This pedagogical proposition is daring and anticipates the introduction of 

machines in Mathematics education through a S.T.E.M. approach. It can be adapted for 

different purposes at various levels: for high school students, Mathematics or Mechanical 

Engineering undergraduates, as well as for professional mathematicians.  

 Although there is much work to be done in this direction, this manuscript could 

potentially serve as a step for the use of mathematical machines in interdisciplinary 

Mathematics education. 
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