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Abstract: 

Student ratings are the most used and influential measure of performance in Higher 

Education, and an integral component of formative and summative decision making. 

This may be particularly relevant in the relatively new online courses, where the 

pedagogical model is still developing. However, student ratings face strong 

controversy, and some remarkable challenges –one of which stems from the fact that 

not all students provide ratings. Nonresponse bias, or the lack of representativeness of 

the providers of ratings, has been measured and discussed in traditional courses, but to 

date no study has analysed nonresponse bias in the online evaluation of a fully online 

higher education course. Our study aims to close this gap. We analysed archival data 

for the students completing the intake module of four psychology online postgraduate 

programmes in a 2-year period (June 2014 to May 2016; n = 457). Statistical analyses 

included correlation, chi-square test, Mantel-Haenszel test of trend, Mann-Whitney’s U 

and regression analysis; effect size was measured with odds ratios, Cramer´s V, and r. 

We found that the likelihood of providing ratings was not associated with sex, age, 

educational background, or familiarity with the British higher education system; 

however, respondents presented significantly higher values than nonrespondents in the 

key variable used to measure their learning experience –final mark. The implications of 
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this finding are discussed in relation to Groves’ (2006) causal models for nonresponse 

bias, as well as the validity and leniency hypotheses. 

 

Keywords: student ratings; learning analytics; teaching quality; nonresponse; online 

education 

 

1. Introduction 

 

Teaching and course evaluations are nowadays conducted in almost every college or 

university (Haladyna & Amrein-Beardsley 2009) within their efforts to provide a high 

quality service to their students. Evaluations have become an integral component of 

both formative decision making (e.g., re-designing courses to improve the student 

experience) and summative decision making, with potential impact on aspects of the 

academics’ career, such as promotion, salary (Avery, Bryant, Mathios, Kang, & Bell 

2006; Mau & Opengart 2012), or course assignment (Adams & Umbach 2012). 

 Whilst there are numerous strategies to measure teaching effectiveness –

including peer ratings, self-evaluation, employer ratings, teaching awards, learning 

outcome measures, teaching portfolios, and others (Berk 2005)–, student ratings (SR) are 

by far the most used and influential measure of performance (Emery, Kramer, & Tian 

2003). In most higher education (HE) institutions, student ratings are collected through 

a short, standardised questionnaire (Murray 2005), on which students are required to 

rate their experience through various rating scales, sometimes complemented with free-

text notes. Depending on the programme and objectives, questions may refer to the 

instructor (e.g., expertise, style, feedback), to the course (e.g., structure, textbook, 

supplementary reading), to student support (e.g., availability of information, 

management of incidences), and others (e.g., equipment quality, student union 

perceptions). 

 However, although most HE teaching staff seem to support SR (Murray 2005), 

strong opinions both for and against their use persist (Theall & Franklin 2001). On the 

one hand, some teachers and administrators consider that SR provides a unique and 

very valuable insight into the teaching-learning process (Gaillard, Mitchell, & Kavota 

2006). On the other hand, some staff question the ability of students to make adequate 

judgments based either in their lack of knowledge about the most appropriate teaching 

methods (Gravestock & Gregor-Greenleaf 2008), or in their application of spurious 

evaluation criteria (Steiner, Holley, Gerdes, & Campbell 2006) –e.g., giving higher 

marks to nicer rather than to the most effective teachers–, in what Gomez-Mejia and 

Balkin (1992) compare to a popularity contest. Also, it is argued that some students 

expect little consequences from their comments and therefore provide superficial 

evaluations (Gaillard et al. 2006).  

 Not surprisingly, SR generate a high volume of research. Regarding reliability, 

findings suggest that ‚ratings of a given instructor are reasonably stable or consistent across 

courses, years, rating forms, and groups of raters, [and that SR] agree with evaluations made by 

others, such as colleagues and alumni‛ (Murray 2005, p.2). However, results about their 
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validity – the other great issue around SR (Donovan, Mader, & Shinsky 2007; Pritchard 

& Potter 2011) – seem to be less consistent. The question here is –do SR really measure 

teaching quality? 

 Some studies have addressed this issue by analysing the variables that affect the 

valence of SR, this is, what makes students provide more (or less) positive ratings. 

These include instructor characteristics such as organisation, clarity, availability and 

knowledge of the subject (Marsh & Roche, 1999), classroom characteristics like time of 

day, class size, subject matter and class level (McPherson 2006; Millea & Grimes 2002), 

characteristics of the course such elective vs. required (Darby 2006), and online vs. 

offline delivery (Ardalan, Ardalan, Coppage, & Crouch 2007; Avery et al. 2006; 

Donovan et al. 2007; Mau & Opengart 2012). 

 One of the most interesting findings in this regard is the repeatedly documented 

significant correlation between expected mark and valence of SR; in other words, 

students with higher expected marks tend to assign higher marks to their instructors 

(Blackhart, Peruche, DeWall, & Joiner 2006; Crumbley & Reichelt 2009; Denson, 

Loveday, & Dalton 2010; Heine & Maddox 2009; Marsh 2007). There is no consensus 

regarding the interpretation of this correlation, but two main proposals are often cited. 

The validity explanation argues that higher marks are in fact the result of a better 

teaching (Heckert, Latier, Ringwald, & Drazen 2006), whereas the leniency hypothesis 

suggests that students give higher scores to instructors from whom they receive, or 

expect to receive good marks (McPherson 2006); an obvious consequence would be that 

instructors are dangerously tempted to artificially raise marks (Pritchard & Potter 2011). 

Additionally, some studies suggest that the correlation between SR and measures of 

student learning may be limited to some forms of assessment (Stehle, Spinath, & 

Kadmon 2012). 

 

1.1 Nonresponse bias 

A different line of research stems from the fact that usually not all the students who 

form the target population do provide ratings –this is, there is some level of 

nonresponse rate. This may be due to a variety of reasons, such as inaccessibility (the 

student did not receive the rating form), inability to respond (due to illness, temporary 

interruptions in internet service and other causes), carelessness (the student lost the 

survey or exceeded the deadline) and noncompliance (they decided not to participate) 

(Sosdian & Sharp, 1980). 

 It may be the case that students who provide SR are systematically different to 

those who do not respond in variables relevant to the evaluation. This results in a 

measurement error known as nonresponse bias (McDaniel & Gates 2012; Sax, Gilmartin, 

& Bryant 2003). As Ellis, Endo and Armer (1970) systematize it, nonresponse bias (NRB) 

is ‚a function of: (a) the proportion of nonrespondents in the total sample and (b) the extent to 

which there is a systematic discrepancy between respondents and nonrespondents on variables 

relevant to the inquiry‛ (p. 103). From this definition, it is evident that low response rates, 

whilst increasing the possibility of error bias (Adams & Umbach 2012; Groves & 
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Peytcheva 2008; Porter & Umbach 2006), will only result in it when respondents’ and 

nonrespondents’ characteristics are actually different (Dillman 1991). 

 NRB poses a substantial threat to the accuracy of results (McDaniel & Gates 2012) 

and to the external validity of conclusions (Micklewright, Schnepf, & Skinner 2012). 

Wrong decisions are then likely to be taken, and the fear that students who complete SR 

are not representative of all students in the class may make teachers disregard the 

information provided by these tools (Sax et al. 2003). A common approach to minimise 

the impact of NRB, is to set a minimum threshold that response rates must exceed for 

the survey to be acceptable – different levels have been suggested, including 75% (Ary, 

Jacobs, & Razavieh 1996), 80% (Gall, Borg, & Gall 1996; Tuckman 1999), 85% (Lindner et 

al. 2001), and 90% (Miller & Smith 1983). However, NRB is not only a function of the 

proportion of nonrespondents in the sample: it does not occur if respondents and 

nonrespondents do not differ substantially, even when the response rate is very low. 

 The recognition of how NRB can be detrimental to a comprehensive 

understanding of student perceptions does motivate efforts to identify, control and 

when possible minimise the sources of nonresponse. Gender is commonly cited as one 

of the main socio-demographic sources of variation, with females usually found to 

respond more than males (Avery et al. 2006; Donovan et al. 2007; McInnis 2006; Porter 

& Umbach 2006; Porter & Whitcomb 2005; Reisenwitz 2016; Sax et al. 2003; Sax, 

Gilmartin, Lee, & Hagedorn 2008). In fact, it has been reported that female students are 

more serious in the evaluation process and consider it as more important than male 

students (Heine & Maddox 2009). Higher likelihood to provide SR has also been 

reported for high-achieving students (Adams & Umbach, 2012; Avery et al. 2006; Porter 

and Umbach, 2006; Porter & Whitcomb, 2005). 

 Other factors that may affect nonresponse include ethnicity (Porter & Umbach 

2006), personality (Marcus & Schutz 2005; Porter & Whitcomb 2005), attitudinal 

characteristics (Hochstim & Athanasopoulos 1970), technology savviness (Reisenwitz 

2016), salience of the survey (Adams & Umbach 2012; Groves et al. 2006), fear of being 

identified (Olsen 2008), perceived lack of skills to provide constructive feedback (Nulty 

2008), survey fatigue/saturation (Adams & Umbach 2012; Gee 2015), timing of the 

evaluation (Estelami 2015), and institutional factors such as urban location, public 

status, and an increased density of students (Porter & Umbach 2006). 

 Mode of delivery of the evaluations has also been identified as a key factor, with 

researchers systematically concluding that the percentage of students completing online 

evaluations is smaller than the percentage of those who complete the evaluations in 

class (Ardalan et al. 2007; Avery et al. 2006; Guder & Malliaris 2013; Nowell, Gale, & 

Handley 2010; Nulty 2008). Online evaluations of teaching are in fact more and more 

common, as the use of the internet and of virtual learning environments expands across 

most if not all universities. In parallel, the number of studies specifically analyzing the 

factors that influence online SR –including nonresponse– have increased in the past 

decade. For instance, Adams and Umbach (2012) studied the influence of salience, 

fatigue, and academic environments on nonresponse rates; Reisenwitz (2016) analysed 

the demographic variables that contribute to nonresponse bias in online student 
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evaluations; and several authors have compared online versus traditional pen-and-

paper evaluations (Donovan et al. 2007; Liegle & McDonald 2005; Nowell, Gale, & 

Kerkvliet 2014; Sax et al. 2003). However, whilst all these studies have analysed the use 

of online SR for on-campus courses, little is still known about the online evaluation of 

online HE courses. If, as previously stated, NRB can lead to mistakes in both formative 

and summative decision making, this might be even more relevant in fully online 

programmes, where the availability of other sources of feedback (e.g., frequent face-to-

face discussions with students and colleagues, or informal observation of students’ 

behaviour) is substantially reduced, and where the evidence to support teaching 

strategies and methods is still limited. 

 The aim of this study is to contribute to closing this gap by analyzing some of the 

factors associated with nonresponse in the online SR of a module corresponding to a 

fully online postgraduate programme delivered by a major HE institution in the United 

Kingdom. Also, we intend to analyse not only two of the most commonly studied 

factors (students’ sex and marks), but also age and familiarity with the evaluation 

context –both largely neglected in the studies. Specifically, from the literature above we 

hypothesize that response will be higher amongst (1) females as compared to males, 

and (2) students with higher marks as compared to students with lower marks. 

Considering Groves, Presser & Dipko’s (2004) finding that participation in surveys is 

higher when the topic is of interest to participants, as well as Groves and Petycheva’s 

(2006) finding that NRB was lower when the sample had prior involvement with the 

survey sponsor, we hypothesize that (3) greater familiarity with the context of the 

evaluation will result in a higher response rate. The relationship between age and 

response will be analysed in an exploratory manner. 

 

1.2 Background of Institution 

This study was conducted at a public research university in the North of England, 

which has offered postgraduate psychology online programmes since 2012. All students 

completing each taught 8- or 12-week module are invited to complete, during the last 

week of the module and the next one after it, a standardized 25-question survey where 

they rate, on a 5-point scale ranging from 1 to 5, several aspects of their instructor’s 

teaching (satisfaction, expertise, style, feedback, etc.), and of the module structure, 

consistency, navigation, textbook, and workload, amongst other aspects. Participation is 

voluntary and students are informed that their answers will remain anonymous, 

although access to the survey requires the students’ regular username and password.  

 

2. Method 

 

2.1 Sample 

After obtaining the approval of the University’s ethics committee (reference 0871), data 

were collected from the 457 students who completed the intake module (common to the 

four postgraduate programmes in psychology) between June 2014 and May 2016; the 

first date corresponds to the moment when the current programmes were launched, 
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and the second was selected to complete a 2-year period. However, for the 13 students 

who failed the module and had to retake it during this period, only the data for the 

second intake were considered. Additionally, due to administrative or technical 

reasons, no data on survey completion were available for 21 students and no personal 

data were available for one student; these students were removed from the sample. 

 The final sample was thus formed by 421 students, 66.3% of them females (n = 

279), aged 21 to 64 years (Median = 35); they had 86 different nationalities (23.5% were 

Britons, 7.6% were Canadians, 5.2% were South-Africans, and the remaining had a 

presence below 5%) and resided in 81 different countries (21.6% in the UK, 7.8% in 

Canada, 7.6% in the United Arab Emirates, and the remaining were very distributed). 

They started the module in 30 classes across 4-5 intakes per year, with 2-4 classes per 

intake. There were between 10 and 20 students per class (M = 14.03, SD = 3.02).  

 

2.2 Analyses 

Two different levels of analyses were used. First, we analysed the data at class level: the 

end-of-module reports were used to retrieve measures of success for each class 

(percentage of successful completion, percentage of marks above pass level, average 

score given by the students to the overall module, and average score given to the 

instructor). The relationship between these variables and response rate was then 

analysed using Person’s and Spearman’s correlations (Shapiro-Wilk tests revealed that 

scores were normal for the percentage variables, with p = .449 and p = .893, respectively; 

and non-normal for the score variables, with p = .007 and p = .002, respectively).  

 Second, we analysed the data at module (whole sample) level. We utilised the 

record-linkage analysis approach, where both respondents and nonrespondents are 

linked to database records that are available for the full sample (Porter & Whitcomb 

2005). Data were collected from two sources. On the one hand, the admission file 

completed for each student was used to retrieve sex, age, educational background, 

nationality and country of residence. No data regarding other potentially relevant 

variables –e.g., socio-economic status or ethnicity– are collected from students and 

therefore they are not available in their files. The variables were coded for educational 

background: completion of a Bachelor degree (or its international equivalent), whether 

or not the degree was in psychology (or had substantial relationship with psychology), 

and if the individual had personal experience as a student or as a teacher in higher 

education in the UK. The three variables were dichotomously coded (1 = yes, 0 = no). 

Independent and blind coding of these variables on a random sample of 20 participants 

was carried out by the fourth researcher, with 100% coincidence with the main coder 

(first researcher). Nationality and country of residence were also dichotomously coded 

(1 = UK, 0 = non-UK). The inclusion of three educational and two country variables 

intended to measure the familiarity of the student with the rating scenario; these 

variables were first analysed independently, and then combined into an ordinal 

variable termed ‘familiarity’, with a score of 0-5 according to the number of 

dichotomous IVs with a YES answer. Whilst we acknowledge that familiarity with other 

HE systems in other parts of the world may have different impact on students’ 
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completion of rating surveys, exploring that possibility was out of the scope of the 

present study –given the vast array of backgrounds in our sample. 

 On the other hand, the information in the virtual learning environment (VLE) 

was used to retrieve, for each student, their final mark in the module and whether or 

not they had completed the end-of-module survey. It must be noted that the specific 

responses given by each student to the survey are not available to anyone because 

feedback data are collated as a whole and no individual responses are stored in the 

system.  

 Chi-square tests were used to measure the significance of the differences in 

response rate between the groups with each of the two values in the nominal variables, 

with odds ratio as a measure of effect size. The differences in response rate associated 

with familiarity –measured in an ordinal scale– were analysed using Mantel-Haenszel 

test of trend, with Cramer´s V (φc) as a measure of effect size. The differences in age and 

mark between respondents and nonrespondents were analysed with Mann-Whitney’s 

U (because the two variables were non-normally distributed; Shapiro-Wilk’s tests p < 

.001), with r as a measure of effect size. Additionally, logistic regression was used to 

further analyse the relationship between each independent variable (IV) and the 

dependent variable (DV), controlling for individual differences in the other IVs. 

 

3. Results 

 

3.1 Class level 

Due to technical reasons, the full data required for analyses was only available for 22 

out of the 30 classes in the study. Response rates were normally distributed (Shapiro-

Wilk’s test p = .981) and ranged from 24% to 87% (M = 56.3, SD = 0.16); in terms of 

quartiles, one class (3.3%) was in the first quartile with a response rate between 0 and 

25%, 7 classes (23.3%) were in the second quartile, 11 classes (36.7%) were in the third 

quartile, and 3 classes (10%) were in the fourth quartile. Response rate correlated 

positively with all measures of class success, although the relationships failed to reach 

significance (r = .29, p = .185 for percentage of success; r = .31, p = .164 for percentage of 

marks above pass level; rs = .31, p = .162 for average class score; rs = .34, p = .128 for 

average instructor score). 

 

3.2 Module level 

Table 1 shows the percentages of response and the significance of differences between 

each value of the dichotomous variables. Although higher percentages of response 

corresponded to females over males, those with a Bachelor degree over those without it, 

those with a degree in psychology slightly over those without it, and students with no 

previous HE experience in the UK over those with previous experience, all differences 

were non-significant. Familiarity, measured by a combined ordinal scale, was not 

related to the likelihood of SR; Mantel-Haenszel χ2(1, n = 421) = 0.12, p = .728, φc = .09. 

Mann-Whitney’s tests revealed that respondents and nonrespondents did not differ in 

age (Mdn = 35 years for respondents and 36 for nonrespondents; U = 20395, p = .630, r = 
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.02). However, they differed significantly in mark, with respondents (Mdn = 65.38) 

presenting higher marks than nonrespondents (Mdn = 58.18); U = 10543, p < .001, r = .42. 

 
Table 1: Percentages of response for each value of the dichotomous variables,  

and significance of differences 

Variable Value n(%) χ(1, n = 421) p OR 

Sex 
Males 79(55.6) 

3.14 .077 1.45, 95% CI [0.96-2.19] 
Females 180(64.5) 

Bachelor 
Yes 231(60.5) 

1.92 .166 1.66, 95% CI [0.80-3.44] 
No 28(71.8) 

Psychology 
Yes 90(61.6) 

0.00 .970 1.01, 95% CI [0.67-1.52] 
No 169(61.5) 

HE UK 
Yes 79(60.3) 

0.12 .731 1.08, 95% CI [0.71-1.64] 
No 180(62.1) 

 

It may be the case that very low final marks correspond mostly to individuals who 

disengaged from the classes before their end, but did not retrieve formally from the 

module (data for those who retrieved from the module were not available). 

Disengagement may be due to academic reasons (skills, dissatisfaction with contents or 

activities, inadequate teaching methods<) but also to other types of reasons (work or 

financial issues, unexpected personal events, health problems<); the reason for each 

individual case’s disengagement was not available. Including these students and their 

marks into the database may overestimate the relationship between low marks and 

nonresponse, as these students are very unlikely to complete the end-of-module survey. 

For this reason, the analyses above were repeated only on the students who passed the 

module (n = 347; 69.5% of them females). All results were similar to those obtained on 

the whole sample. 

 Confirmation tests were conducted on the whole sample using logistic 

regression, with response as DV and sex, age, mark and combined familiarity as IVs. 

Also, all possible IV interaction terms were created and tested. With this procedure, we 

intended to measure the relationship of each IV with the DV, controlling for the effect of 

the remaining IVs. This is important because males and females were found to differ 

significantly in age and mark (Mann-Whitney’s U = 16811, p = .011, r = .12 for age; U = 

16747.5, p = .009, r = .13 for mark), although not in familiarity (U = 19484, p = .774, r = 

.01). The only significant effect on the DV was found for mark, with β = 0.075 (1), Wald 

= 55.03, p < .001, OR = 1.08, 95%CI [1.06-1.10]. A one-unit increase in mark was 

associated with 1.08 times greater likelihood that the student provides rating (i.e., is a 

respondent). Chi-square was nonsignificant at p = .070 in the Hosmer and Lemeshow 

test, which indicates that the data fit the model well; also, Nagelkerke’s R square was 
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.339, which roughly implies that 33.9% of the variability in the DV (likelihood of 

response) is accounted for by the IV (mark). 

 

4. Discussion 

 

To the best of our knowledge, this is the first study on NRB in a fully online 

programme. Our results only partly resemble those from previous research, and 

therefore only one of our three hypotheses receives support. Contrary to the findings in 

most studies –and to our first hypothesis–, females were as likely as males to provide 

SR, even when the other possible IVs were controlled for. It is possible that the mode of 

delivery (online), the level of education (postgraduate) or the subject of the programme 

(psychology) are partly responsible for our results. On the other hand, our results are in 

consonance with those of Spencer and Schmelkin (2002), who found no meaningful 

differences between male and female students’ attitudes towards SR. 

 As indicated in our third hypothesis, we also expected that greater familiarity 

with the context in which the evaluation takes place would promote more positive 

attitudes which, in turn, would result in a higher response rate. However, we found no 

association between response rate and any measure of familiarity, either independently 

considered or in the form of a combined scale. Perhaps greater familiarity only 

promotes better attitudes when it implies the perception of a positive impact on the 

students’ experience (e.g., via timely and effective responses from the academic 

institution), which might not necessarily reflect the experience of many students. In fact, 

it has been reported that the importance given to SR by graduate students and seniors is 

lower than that given by juniors and sophomores –although no possible explanations 

for this difference were suggested or explored (Spencer & Schmelkin 2002). 

 The second hypothesis (students with higher marks will be more likely to 

provide SR, as compared to students with lower marks), was supported. In fact, mark 

was the only variable significantly associated with response rate. It must be noted that 

the final mark in the module is the weighted average of the marks obtained in the 

different weekly assignments, and that at the moment of completing the survey, some 

marks have not yet been communicated to the students –although they already know 

others and can make a rough estimation of their final result.  

 What do these results tell us about the validity of the students’ ratings, as used in 

our programmes? First: the students who provide SR may not be representative of the 

population of students who register in the module (as those who voluntarily retrieve 

from it do not provide any feedback, although it seems sensible to assume that at least 

some of them may have dropped-out due to dissatisfaction with their learning 

experience). Second, the students who provide SR may not be representative of the 

population of students who complete the course (as the students who complete but fail 

are under-represented and those who complete and pass are over-represented). Third, 

the students who provide SR may not be representative of the population of students 

who pass the course (as those who pass with higher marks are more likely to provide SR 

than those who pass with lower marks). These results do not directly imply that the 
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course is either over- or under-rated; they simply indicate that those who provide SR 

are significantly different –in academic success in the module– from those who do not 

provide SR. 

 We can now go back to Ellis et al.’s (1970) definition of nonresponse bias as ‚a 

function of: (a) the proportion of nonrespondents in the total sample and (b) the extent 

to which there is a systematic discrepancy between respondents and nonrespondents on 

variables relevant to the inquiry‛ (p. 103). With regard to the first criterion, the average 

percentage of nonrespondents in the classes analysed was 44%, with only one out of ten 

classes exceeding the 75% participation that constitutes the lowest of the thresholds 

suggested (Ary et al., 1996), and none reaching the most exigent threshold of 90% 

(Miller & Smith, 1983). With regard to the second criterion, we found a systematic 

discrepancy between respondents and nonrespondents in final mark.  

 The causal models that describe alternative conditions related to NRB, as 

suggested by Groves (2006), can help in the interpretation of this finding. According to 

the separate causes model, the vector of causes of the Y variable (mark) is independent of 

the causes of response propensity, P. The common cause model asserts that Y (mark) and 

response propensity have shared causes (Z). Finally, the survey variable cause model 

asserts that Y (mark) is a cause of response propensity. 

 The existence of covariance between mark and response propensity allows us to 

reject the separate causes model. With regard to the common cause model, our results 

exclude gender, age, general academic background or familiarity as shared causes. That 

causal role might be played by better learning experience. As indicated above, previous 

research has revealed that students with higher expected marks tend to assign higher 

marks in their ratings (Blackhart et al. 2006; Crumbley & Reichelt 2009; Denson et al. 

2010; Heine & Maddox 2009; Marsh 2007). If this is due to better learning experience –as 

in the validity explanation–, then it may be the case that students who learn more and 

better are also more engaged in satellite activities such as completing the end-of-module 

survey. Better learning experience might then be a common cause, Z, for both marks 

and participation, and it would also explain our finding that participation increased in 

parallel to class results –although the relationship, with correlation values around .30, 

failed to reach significance. If better learning experience is behind the covariance 

between marks and participation, then the validity of the surveys is unchallenged: 

courses obtain higher scores because they are effectively better. However, better 

teaching-learning experience cannot be directly identified with better teaching. It involves a 

complex process that, rather than a unidirectional influence of the instructor’s skills and 

attitudes, may require an alignment of attitudes, personality traits, needs and interests 

between teacher and student –further shaped by individual values such as individual 

responsibility, gratitude, social responsibility, social engagement and even empathy on 

behalf of the student (see Stronge, Tucker & Hindman 2004).  

 On the other hand, also the leniency hypothesis can be used to explain our 

results: more lenient instructors might over-grade some of their students, who in turn 

may be more likely to participate in the survey (and to provide better scores in it) as a 

form of reward or compensation. This is consistent with the survey variable cause 
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model, with marks (Y) being the cause of participation (P). If that is the case, good 

scores in SR may not necessarily identify good teaching, but perhaps a more lenient one 

–the scores in the end-of-module surveys are likely to be inflated. 

 Our study did not have access to other potentially relevant variables that might 

shed light over the relationships above, such as attitudes, expectations, language, 

personality, previous experience with feedback, or non-academic events affecting the 

students’ performance –and we used ‘proxy’ measures for familiarity. In fact, in a 

sample formed by students from 86 countries, cultural specificities can be expected to 

play a role in the likelihood to provide feedback –e.g., some students may not feel as 

comfortable as others when it comes to questioning their instructor’s capabilities, skills 

or knowledge. The potential effect of teachers’ instructions was not measured either; 

e.g., some of them may have played a more active role than others in engaging their 

students with the survey. Also, we analysed solely psychology postgraduate students, 

who may differ from students in other levels and disciplines. Additionally, all 

nonrespondents in our study were analysed together, whilst it has been reported that 

the various types of nonresponse produce different bias (Campanelli, Sturgis, & 

Purdon, 1997; Groves & Couper, 1998). Future research should address these limitations 

and provide an empirically supported interpretation for the relationships identified. In 

the absence of such an interpretation, it will remain unclear whether the nonresponse 

bias here identified challenges the validity of student ratings. 

 

Conflict of Interest 

The authors declare that they have no conflict of interest. 

 

 

References 

 

Adams, M. J. D., and Umbach, P. D. (2012). Nonresponse and Online Student 

 Evaluations of Teaching: Understanding the Influence of Salience, Fatigue, and 

 Academic Environments. Research in Higher Education, doi: 10.1007/s11162-011-

 9240-5 

Ardalan, A., Ardalan, R., Coppage, S., and Crouch, W. (2007). A comparison of student 

 feedback obtained through paper-based and web-based surveys of faculty 

 teaching. British Journal of Educational Technology, doi: 10.1111/j.1467-

 8535.2007.00694.x 

Ary, D., Jacobs, L., and Razavieh, A. (1996). Introduction to research in education (5th Ed.). 

 Ft. Worth, TX: Holt, Rinehar, and Winston, Inc. 

Avery, R. J., Bryant, W. K., Mathios, A., Kang, H., and Bell, D. (2006). Electronic course 

 evaluations: Does an online delivery system influence student evaluations? 

 Journal of Economic Education, doi: 10.3200/JECE.37.1.21-37 

Berk, R. A. (2005). Survey of 12 strategies to measure teaching effectiveness. International 

 Journal of Teaching and Learning in Higher Education, 17(1), 48-62.  



Ricardo Tejeiro, Alexander Whitelock-Wainwright, Alina Perez, Miguel Angel Urbina-Garcia 

THE BEST-ACHIEVING ONLINE STUDENTS ARE OVERREPRESENTED IN COURSE RATINGS 

 

European Journal of Open Education and E-learning Studies - Volume 3 │ Issue 2 │ 2018                                              54 

Blackhart, G. C., Peruche, B. M., DeWall, C. N., and Joiner, T. E. (2006). Factors 

 influencing teaching evaluations in higher education. Teaching of Psychology, 

 33(1), 37–39. 

Campanelli, P., Sturgis, P., and Purdon, S. (1997). Can You Hear Me Knocking: An 

 Investigation into the Impact of Interviewers on Survey Response Rates. London: 

 S.C.P.R. 

Crumbley, D. L., and Reichelt, K. J. (2009). Teaching effectiveness, impression 

 management, and dysfunctional behavior: Student evaluation of teaching control 

 data. Quality Assurance in Education, doi: 10.1108/09684880910992340 

Darby, J. A. (2006). The effects of the elective or required status of courses on student 

 evaluations. Journal of Vocational Education and Training, doi: 

 10.1080/13636820500507708 

Denson, N., Loveday, T., and Dalton, H. (2010). Student evaluation of courses: what 

 predicts satisfaction. Higher Education Research and Development, doi: 

 10.1080/07294360903394466 

Dillman, D. A. (1991). The design and administration of mail surveys. Annual Review of 

 Sociology, doi: 10.1146/annurev.so.17.080191.001301 

Donovan, J., Mader, C., and Shinsky, J. (2007). Online vs. traditional course evaluation 

 formats: student perceptions. Journal of Interactive Online Learning, 6(3), 158-180. 

Ellis, R. A., Endo, C. H., and Armer, J. M. (1970). The use of potential nonrespondents 

 for studying nonresponse bias. Pacific Sociological Review, doi: 10.2307/1388313 

Emery, C. R., Kramer, T. R., and Tian, R. G. (2003). Return to academic standards: A 

 critique of students’ evaluations of teaching effectiveness. Quality Assurance in 

 Education: An International Perspective, doi: 10.1108/09684880310462074 

Estelami, H. (2015). The effects of survey timing on student evaluation of teaching (SET) 

 measures obtained using online surveys. Journal of Marketing Education, doi: 

 10.1177/0273475314552324 

Gaillard, F. D., Mitchell, S. P., and Kavota, V. (2006). Students, faculty, and 

 administrators’ perception of students’ evaluations of faculty in higher education 

 business schools. Journal of College Teaching and Learning, doi: 

 10.19030/tlc.v3i8.1695 

Gall, M. D., Borg, W. R., and Gall, J. P. (1996). Educational research: An introduction (6th 

 ed.). White Plains, NY: Longman. 

Gee, N. (2015). A study of student completion strategies in a Likert-type course 

 evaluation survey. Journal of Further and Higher Education. Advance online 

 publication. doi: 10.1080/0309877X.2015.1100717 

Gomez-Mejia, L. R., and Balkin, D. B. (1992). Determinants of Faculty Pay: An Agency 

 Theory Perspective. Academy of Management Journal, 35(5), 921-955. 

Gravestock, P., and Gregor-Greenleaf, E. (2008). Student course evaluations: Research, 

 models and trends. Toronto: Higher Education Quality Council of Ontario. 

Groves, R. M. and Couper, M. P. (1998). Nonresponse in Household Interview Surveys. New 

 York: Wiley. 



Ricardo Tejeiro, Alexander Whitelock-Wainwright, Alina Perez, Miguel Angel Urbina-Garcia 

THE BEST-ACHIEVING ONLINE STUDENTS ARE OVERREPRESENTED IN COURSE RATINGS 

 

European Journal of Open Education and E-learning Studies - Volume 3 │ Issue 2 │ 2018                                              55 

Groves, R. M. (2006). Nonresponse rates and nonresponse bias in household surveys. 

 Public Opinion Quarterly, doi:10.1093/poq/nfl033 

Groves, R. M., and Peytcheva, E. (2008). The impact of nonresponse rates on 

 nonresponse bias: A metaanalysis. Public Opinion Quarterly, doi: 

 10.1093/poq/nfn011 

Groves, R. M., Couper, M., Presser, S., Singer, E., Tourangeau, R., Piani Acosta, G., et al. 

 (2006). Experiments in producing nonresponse bias. Public Opinion Quarterly, doi: 

 10.1093/poq/nfl036 

Groves, R. M., Presser, S., and Dipko, S. (2004). The role of topic interest in survey 

 participation decisions. Public Opinion Quarterly, doi: 10.1093/poq/nfh002 

Guder, F., and Malliaris, M. (2013). Online course evaluations response rates. American 

 Journal of Business Education, 6(3), doi: 10.19030/ajbe.v6i3.7813 

Haladyna, T., and Amrein-Beardsley, A. (2009). Validation of a research-based student 

 survey of instruction in a college of education. Educational Assessment, Evaluation 

 and Accountability, doi:10.1007/s11092-008-9065-8 

Heckert, T. M., Latier, A., Ringwald, A., and Drazen, C. (2006). Relations among student 

 effort, perceived class difficulty appropriateness, and student evaluations of 

 teaching: Is it possible to "buy" better evaluations through lenient grading? 

 College Student Journal, 40(3), 588-596. 

Heine, P., and Maddox, N. (2009). Student perceptions of the faculty course evaluation 

 process: An exploratory study of gender and class differences. Research in Higher 

 Education Journal, 3, 1–10. 

Hochstim, J. R., and Athanasopoulos, D. A. (1970). Personal follow-up in a mail survey: 

 Its contribution and its cost. Public Opinion Quarterly, doi: 10.1086/267774 

Liegle, J., and McDonald, D. S. (2005). Lessons Learned From Online vs. Paper-based 

 Computer Information Students’ Evaluation System. Information Systems 

 Education Journal, 3(37). Retrieved from http://isedj.org/3/37/. ISSN: 1545-679X.  

Lindner, J. R., Murphy, T. H., and Briers, G. H. (2001). Handling nonresponse in social 

 science research. Journal of Agricultural Education, doi: 10.5032/jae.2001.04043 

Marcus, B., and Schutz, A. (2005). Who are the people reluctant to participate in 

 research? Personality correlates of four different types of nonresponse as inferred 

 from self- and observer ratings. Journal of Personality, doi: 10.1111/j.1467-

 6494.2005.00335.x 

Marsh, H. W. (2007). Students’ evaluations of university teaching: Dimensionality, 

 reliability, validity, potential biases and usefulness. In R. P. Perry and J. C. Smart 

 (Eds.), The scholarship of teaching and learning in higher education: An evidence-based 

 perspective (pp. 319–383). Dordrecht: Springer. 

Marsh, H. W. and Roche, L. A. (1999). Rely upon SET research. American Psychologist, 

 doi: 10.1037/0003-066X.54.7.517 

Mau, R. R., and Opengart, R. A. (2012). Comparing ratings: In-class (paper) versus out 

 of class (online) student evaluations. Higher Education Studies, doi: 

 10.5539/hes.v2n3p55 



Ricardo Tejeiro, Alexander Whitelock-Wainwright, Alina Perez, Miguel Angel Urbina-Garcia 

THE BEST-ACHIEVING ONLINE STUDENTS ARE OVERREPRESENTED IN COURSE RATINGS 

 

European Journal of Open Education and E-learning Studies - Volume 3 │ Issue 2 │ 2018                                              56 

McDaniel, C., Jr., and Gates, R. (2012). Marketing research (9th Ed.). Hoboken, NJ: John 

 Wiley.  

McInnis, E. D. (2006). Nonresponse Bias in Student Assessment Surveys: A Comparison of 

 Respondents and Non-Respondents of the National Survey of Student Engagement at an 

 Independent Comprehensive Catholic University (Doctoral dissertation, Marywood 

 University). Retrieved from 

 http://nsse.indiana.edu/pdf/research_papers/Nonresponse%20Bias%20in%20Stu

 dent%20Assessment%20Surveys%20-%20Elizabeth%20McInnis.pdf  

McPherson, M. A. (2006). Determinants of how students evaluate teachers. Journal of 

 Economic Education, doi: 10.3200/JECE.37.1.3-20 

Micklewright, J., Schnepf, S. V., and Skinner, C. (2012). Non-response biases in surveys 

 of schoolchildren: the case of the English Programme for International Student 

 Assessment (PISA) samples. Journal of the Royal Statistical Society: Series A 

 (Statistics in Society), doi: 10.1111/j.1467-985X.2012.01036.x 

Millea, M. and Grimes, P. W. (2002). Grade expectations and student evaluation of 

 teaching. College Student Journal, 36(4), 582–591. 

Miller, L. E., and Smith, K. L. (1983). Handling nonresponse issues. Journal of Extension, 

 21(5), 45-50. 

Murray, H. G. (2005, June). Student Evaluation of Teaching: Has It Made a Difference? Paper 

 presented at the Annual Meeting of the Society for Teaching and Learning in 

 Higher Education, Charlottetown, Canada. Retrieved from 

 https://www.stlhe.ca/wp-content/uploads/2011/07/Student-Evaluation-of-

 Teaching1.pdf  

Nowell, C., Gale, L. R., and Handley, B. (2010). Assessing faculty performance using 

 student evaluations of teaching in an uncontrolled setting. Assessment and 

 Evaluation in Higher Education, doi: 10.1080/02602930902862875 

Nowell, C., Gale, L. R., and Kerkvliet, J. (2014). Non-response bias in student 

 evaluations of teaching. International Review of Economics Education, doi: 

 10.1016/j.iree.2014.05.002 

Nulty, D.D. (2008). The adequacy of response rates to online and paper surveys: What 

 can be done? Assessment and Evaluation in Higher Education, doi: 

 10.1080/02602930701293231 

Olsen, D. (2008). Teaching patterns: A pattern language for improving the quality of 

 instruction in higher education settings (Doctoral dissertation, Utah State 

 University). Retrieved from 

 http://digitalcommons.usu.edu/cgi/viewcontent.cgi?article=1050andcontext=etd  

Porter, S. R., and Umbach, P. D. (2006). Student survey response rates across 

 institutions: Why do they vary? Research in Higher Education, doi: 10.1007/s11162-

 005-8887-1 

Porter, S. R., and Whitcomb, M. E. (2005). Non-response in student surveys: The role of 

 demographics, engagement, and personality. Research in Higher Education, doi: 

 10.1007/s11162-004-1597-2 

http://nsse.indiana.edu/pdf/research_papers/Nonresponse%20Bias%20in%20Student%20Assessment%20Surveys%20-%20Elizabeth%20McInnis.pdf
http://nsse.indiana.edu/pdf/research_papers/Nonresponse%20Bias%20in%20Student%20Assessment%20Surveys%20-%20Elizabeth%20McInnis.pdf
https://www.stlhe.ca/wp-content/uploads/2011/07/Student-Evaluation-of-Teaching1.pdf
https://www.stlhe.ca/wp-content/uploads/2011/07/Student-Evaluation-of-Teaching1.pdf
http://digitalcommons.usu.edu/cgi/viewcontent.cgi?article=1050andcontext=etd


Ricardo Tejeiro, Alexander Whitelock-Wainwright, Alina Perez, Miguel Angel Urbina-Garcia 

THE BEST-ACHIEVING ONLINE STUDENTS ARE OVERREPRESENTED IN COURSE RATINGS 

 

European Journal of Open Education and E-learning Studies - Volume 3 │ Issue 2 │ 2018                                              57 

Pritchard, R. E., and Potter, G. C. (2011). Adverse changes in faculty behavior resulting 

 from use of student evaluations of teaching: A case study. Journal of College 

 Teaching and Learning, doi: 10.19030/tlc.v8i1.980  

Reisenwitz, T. H. (2016). Student Evaluation of Teaching: An Investigation of 

 Nonresponse Bias in an Online Context. Journal of Marketing Education, doi: 

 10.1177/0273475315596778 

Sax, L. J., Gilmartin, S. K., and Bryant, A. N. (2003). Assessing response rates and 

 nonresponse bias in web and paper surveys. Research in Higher Education, doi: 

 10.1023/A:1024232915870 

Sax, L. J., Gilmartin, S. K., Lee, J. J., and Hagedorn, L. S. (2008). Using web surveys to 

 reach community college students: An analysis of response rates and response 

 bias. Community College Journal of Research and Practice, doi: 

 10.1080/10668920802000423 

Sosdian, C. P., and Sharp, L. M. (1980). Nonresponse in mail surveys: Access failure or 

 respondent resistance. Public Opinion Quarterly, doi: 10.1086/268606 

Spencer, K. J., and Schmelkin, L. P. (2002). Student perspectives on teaching and its 

 evaluation. Assessment and Evaluation in Higher Education, doi: 

 10.1080/0260293022000009285 

Stehle, S., Spinath, B. and Kadmon, M. (2012). Measuring Teaching Effectiveness: 

 Correspondence Between Students’ Evaluations of Teaching and Different 

 Measures of Student Learning. Research in Higher Education, doi: 10.1007/s11162-

 012-9260-9 

Steiner, S., Holley, L. C., Gerdes, K., and Campbell, H. H. (2006). Evaluating teaching: 

 Listening to students while acknowledging bias. Journal of Social Work Education, 

 doi: 10.5175/JSWE.2006.200404113 

Stronge, J. H., Tucker, P. D., and Hindman, J. L. (2004). Handbook for Qualities of Effective 

 Teachers. Alexandria, VA: Association for Supervision and Curriculum 

 Development. 

Theall, M., and Franklin, J. L. (2001). Looking for bias in all the wrong places: A search 

 for truth or a witch hunt in student ratings of instruction? In M. Theall, P. C., 

 Abrami, and L. A. Mets (Eds.), The student ratings debate: Are they valid? How can 

 we best use them? (New Directions for Institutional Research, No. 109) (pp. 45–56). 

 San Francisco, CA: Jossey-Bass. 

Tuckman, B. W. (1999). Conducting education research (5th ed.). Fort Worth, TX: Harcourt 

 Brace. 

  

 

 

 

 

 

 

 



Ricardo Tejeiro, Alexander Whitelock-Wainwright, Alina Perez, Miguel Angel Urbina-Garcia 

THE BEST-ACHIEVING ONLINE STUDENTS ARE OVERREPRESENTED IN COURSE RATINGS 

 

European Journal of Open Education and E-learning Studies - Volume 3 │ Issue 2 │ 2018                                              58 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Creative Commons licensing terms 
Author(s) will retain the copyright of their published articles agreeing that a Creative Commons Attribution 4.0 International License (CC BY 4.0) terms 

will be applied to their work. Under the terms of this license, no permission is required from the author(s) or publisher for members of the community 
to copy, distribute, transmit or adapt the article content, providing a proper, prominent and unambiguous attribution to the authors in a manner that 

makes clear that the materials are being reused under permission of a Creative Commons License. Views, opinions and conclusions expressed in this 
research article are views, opinions and conclusions of the author(s). Open Access Publishing Group and European Journal of Education Studies shall 

not be responsible or answerable for any loss, damage or liability caused in relation to/arising out of conflicts of interest, copyright violations and 
inappropriate or inaccurate use of any kind content related or integrated into the research work. All the published works are meeting the Open Access 
Publishing requirements and can be freely accessed, shared, modified, distributed and used in educational, commercial and non-commercial purposes 

under a Creative Commons Attribution 4.0 International License (CC BY 4.0).  

https://creativecommons.org/licenses/by/4.0/

