CONFlicts on Team Trust and Team Performance at the University Scientific Research Teams in Jiangsu Province, China: Structural Equation Modeling Approach

Yu Yun¹, Jacqueline Tham, S. M. Ferdous Azam
Postgraduate Centre (PGC), Management and Science University, University Drive, Off Persiaran Olahraga, 40100 Shah Alam, Selangor, Malaysia

Abstract:
The purpose of this research is to assess the conflicts on team trust and team performance at the university scientific research teams in Jiangsu Province, China utilizing structural equation modeling approach. This report focuses on the scientific education of university scientific research teams in Jiangsu Province, China. Team Success has been described as one of the major concerns. The final sample size was set at 140. This research contributes to the current assemblage of information in the understanding of Team Success, since this is the primary study in the arrangement of such variables. As it has been, this study seeks to broaden understanding of the links between task and relationship conflict, learning ability, information accessibility, process conflict, team confidence, workforce optimization and team performance in the University Scientific Research Teams of Jiangsu Province, China In the light of past studies, a research show has been produced from which speculation has been detailed. As a rule, the model has been provided with experimental support, which strengthens our hypothetical understanding. Research by and wide has made commitments as follows.

Keywords: conflicts, team trust, team performance, university scientific research teams, Jiangsu Province, China

¹ Correspondence: 707816981@qq.com
1. Introduction

Team conflict, disagreements between team members have most frequently been conceptualized in terms of task and relationship conflict (Phungsoonthorn & Charoensukmongkol, 2018; Weingart, Behfar, Bendersky, Todorova, & Jehn, 2005). Although contemporary research stream has consistently theorized conflict as a multi-dimensional construct and organizational narratives seem to support this view, a pattern of seemingly contradictory results has emerged about the relationship between the dimensions of conflict and team outcomes (Phungsoonthorn & Charoensukmongkol, 2018; de Wit et al., 2012). Team conflict in the case of research team at Jiangsu University is inevitable despite many studies being put forward to resolve the situation (Jang, 2017; Tham et al., 2017; Udriyah et al., 2019). Leadership style as well as management is creating severe problems with the team in developing trust and group cohesion. This has negatively impacting the team’s ability to establish effective communication and coordination processes to successfully complete the project (Jang, 2017; Thompson, 2011). Nevertheless, resolution on conflict that arises remained unsolved. Favoritism among fellow team members results a leader’s inability to manage a cross-functional task with an emphasis in reciprocal interdependence.

It is also noted in the Jiangsu University that Core-team members have different views on how to handle the project which created a task conflict. The lack of trust between team members created emotional conflict, which affected team performance and team-member satisfaction (Lee et al., 2015). The strong emotional discontent produced strong hostility bias and created a situation in which task-based suggestions from the research members were met with antagonism and rejection from the fellow research members (Lenny et al., 2018; Rachmawati et al., 2019; Azam and Yusoff, 2020; Azam et al., 2020).

The team structure is too big and adding more team members will not resolve the conflict. In fact, it will cause more problems such as distorting communication and slowing down processes (Cox, 2019; Thompson, 2011; Azam et al., 2014; Haur et al., 2017; Katukurunda et al., 2019). Adding sub-team sponsors at this point would definitely affect the team’s decision making process. A sub-team becomes another layer within the team that information needs to be communicated to. By adding this layer, the increase for miscommunications is present as the original message can be lost as this further goes down the chain. Also, conflicts within the core group can trickle down and impact the subgroups since knowledge cannot be effectively shared (Duan & Frazier, 2019; Sheng & Yeh, 2009). This was present in the case. Currently, the team is dominated by the project manager, which is negatively impacting the team’s performance. Appointing sub-team sponsors is a good way to mediate team conflict and improve team performance. Also, since each sub-team had a different focus, this helps distribute the project duties amongst the entire team establishing reciprocal interdependence; “high levels of task interdependence, which require interactions among group members to obtain crucial resources, consistently enhance performance” (Cox, 2019; Thompson, 2011; Dewi et al., 2019; Nguyen et al., 2019).
Moreover, few studies (Cheung, 2016; Nathan & Lee, 2013; Nielsen & Einarsen, 2012) have carried out in-depth analysis on the intermediate mechanism of team conflict on team performance. To fill the research gap, this study focuses on exploring the intermediate variable of the conflict influencing process. Thus, the main objective of the study is to investigate the influence of team conflict on team performance in university scientific research teams in Jiangsu Province, China.

2. Literature Review

In today’s fast changing, hyper-competitive environment, teamwork and co-operative working enhance the organisation’s adaptive capability. The team, rather than the individual, is increasingly seen as the building block of organisations and a key source of competitive advantage.

Theory of task conflict and performance in groups and organizational teams was put forward by Paul, He and Dennis in 2018. It claims conflicts have effects on group performance. Whether conflict is beneficial or detrimental to group performance depends on three factors: conflict type, conflict management approach and task type. This theory divides conflict into two types: task-content and task-process conflict. Task-content refers to disagreements amongst members within a team about the content of tasks that they are working on, which typically includes differences in viewpoints, ideas, and opinions. Task-process conflict refers to disagreements about the distribution of responsibilities and resources. This theory claims conflict management approaches contain collaborating, contending, and avoiding. This theory puts forwards that task type can be divides to highly complex tasks and lowly complex tasks according to the difficulty and variability of the tasks. Task conflicts are more beneficial for team performance when members within a team engage in highly complex tasks. Highly complex tasks require consideration by every team member (Echem & Chan, 2018; Maghfuriyah et al., 2019; De Silva et al., 2017; Kuruwitaarachchi et al., 2019; Pambreni et al., 2019).

When a team engages in highly complex tasks, task conflict fosters intensive information exchange as well as thoroughgoing information processing. Problems can be considered from different perspectives, different opinions or alternatives can be discussed, which may produce high quality solutions and enhance performance. By contrast, tasks in lowly complex do not require variety methods to solve issues. Task conflict is more likely to have a weak or non-significant effect on team performance. (Michael, Dean and Ken, 2005) This theory provides theoretical foundation for this study to consider conflicts as independent variables, team performance as a dependent variable.

In extant literature, there has much debate on whether task conflict positively or negatively affects team performance. So far, there is no uniform answer to this question. However, some studies showed that task conflict has negative or no association with team performance (Martinez-Moreno, 2009; O’Neill & Mclarmon, 2018; Ma, 2018; Chun et al., 2019; Yang et al., 2019), because task conflict may produce tension, frustration,
dissatisfaction and antagonism among team members. Lumineau, Eckerd and Handey (2015) reviewed 28 articles from 1996 to 2001 and conducted the Meta-Analysis involving the relationship between task conflict and team performance. On the other hand, most studies found that the relationship conflict had a negative effect on team performance (Rocksthul & Ng, 2015, Russ, 2013, Dreu and Weingart, 2003; O’Neill et al., 2018; DeChurch, 2013; Ma, 2018). The result of the mean corrected correlation between relationship conflict and performance of De Dreu and Weingart (2003)’s Meta-Analysis was -0.22, which means relationship conflict is negative associated with performance. Relationship conflicts suppress team performance in following three ways: Firstly, relationship conflicts reduce team performance because the negative emotions negatively affect the quality of decision making and knowledge exchange (Amason, 1996). When team members have relationship conflicts, they might be uncooperative and have different destination. Secondly, team members might focus on power struggle rather than on team tasks, which might lead to unreasonable resource allocation such as the number of participants, time, cost, and facility. Thirdly, relationship conflicts negatively affect team morale and team cohesion (Dmitriy et al., 2016). There are also a few studies indicated that relationship conflict has negative or no association with team performance (Deyoe & Fox, 2012; Desmond et. al, 2017).

Besides, process conflict was neglected by scholars. Very few studies had investigated the influence of process conflict on team performance. Desmond et. al (2017) pointed that when process conflict is in low level, it is positively related to team performance. However, when process conflict is in high level, process conflict is more likely to negatively affect team performance. If team members had intensive argument about “who should do what”, “How to distribute norms of resources”, they might be disturbed by the uncertainty conflict generated and use longer time to complete task. In addition, they might feel unfair due to the unreasonable resources, responsibilities and interests’ distribution, which was detrimental to team performance.

This study considers three types of conflicts (task conflict, relationship conflict and process conflict) as independent variables, team performance as a dependent variable, team trust as the mediating variable. The conceptual framework that is shown in Figure 1 depicts the relationship between the variables used in this study. The hypothesized research model and the key relationships to be tested in this study are illustrated in Figure 1.
Considering the above conceptual framework, the following hypotheses can be presented.

H1: Task and Relationship Conflict (TRC) is positively related to Team Trust (TT).

H2: Process Conflict (PC) is positively related to Team Trust (TT).

H3: Task and Relationship Conflict (TRC) is positively related to Team Performance (TP).

H4: Team Trust (TT) is positively related to Team Performance (TP).

H5: Process Conflict (PC) is positively related to Team Performance (TP).

H6: There is a Reciprocal Relationship between Task and Relationship Conflict (TRC) and Process Conflict (PC).

3. Materials and Methods

The quantitative method is exploring the relationships among variables rather than explaining the variables. In quantitative studies researchers are primarily collecting data and analyze them statistically to interpret the relationship between variables. Thus, the deductive approach is applied in this study. It provides a systematic approach by which the researchers can generate knowledge to solve basic and managerial issues. The researcher starts out with a general theory and then narrows down the theory into hypotheses (or a hypothesis) that can be tested. The deductive approach enables the researcher to work from the general to the specific (Sekaran & Bougie, 2016).

In this study survey method is used. Questionnaire survey is used to collect raw data: questionnaire survey. The questionnaire refers to a tool that enables the researchers to collect information to compare, explain or describe an event /situation, attitudes, knowledge, behaviors, and/or socio demographic characteristics on a particular target group. Generally, questionnaires are designed to collect quantitative data in large
numbers. Questionnaires can be classified into personally administered questionnaires, mail questionnaires, electronic and online questionnaires (Sekaran und Bougie, 2016). In this study, a well-developed questionnaire will be designed.

It is reported that there are 167 regular tertiary education institutions in Jiangsu Province. In these institutions, 170589 educational personnel can be found, among them 116350 are full-time teachers, 2048 are personnel in affiliated research organization, and 24648 are administrative personnel. In addition, there are approximately 31355 enrolment doctor students and about 196846 enrolment master students. (Ministry of Education of the People’s Republic of China, 2019) University scientific research teams in China mainly consist of teachers, doctor and master students. However, there is no official figure on the number of educational personnel and students who join the University Scientific Research Teams. The estimated size of study population is about 150000 (Zhang, 2018). Finally, 140 respondents have been considered as a final sample for this research.

Software SPSS 23.0 and AMOS 23.0 are used for data analysis in this study. SPSS 23.0 is used in descriptive statistic analysis, reliability statistics analysis and exploratory factor analysis. AMOS 23.0 is used in confirmatory factor analysis. Besides, AMOS 23.0 is used for testing main effects hypotheses.

3.1 Data Analysis
The respondents were classified according to gender, age, current position, years of service, rank and department of working. The sample size was 140 out of which 76 were males and 64 were females whose percentage is 54.3% for male and 45.7 % for female. Most of the researchers working in this sector are lies in the age of 35 and above which 60.7 % researchers are having age of 30-35 are 18.6 % and researchers of age 25-30 are 20.7%. Most of the researchers in education are graduates having bachelor’s degree that is of 62.1 % after this Master’s degree holders are 31.4 % and PhD degree holders are 6.4 %. Researchers who are working more than 10 years are 50.7% of the sample researchers having experience of 5-10 years are 23.6 % and the researchers who are fresh in this sector are 25.7% means they have less than 5 years of experience. The survey was distributed among all the levels of the sector, from which managerial level is on top having 37.9% of sample after this executive level of 32.1% directors are 6.4% and other like secretaries are 12.9%. So, it was attempted by every rank, it can be deducted it will be a realistic research. The study aimed to identify the construct validity of Task and Relationship Conflict (TRC), Process Conflict (PC), Team Trust (TT) and Team Performance (TP) on the basis of data collected from the respondents. The dimensionality of the Task and Relationship Conflict (TRC), Process Conflict (PC), Team Trust (TT) and Team Performance (TP) were sought through a principal component analysis (PCA) after which a confirmatory factor analysis (CFA) was conducted to confirm the dimensionality obtained through PCA.

PCA with Varimax rotation was performed on the data collected. Four latent factors were extracted with eigenvalues greater than one, explaining 55.70% of total variance. Thus, the results show that four latent factors were successfully extracted on 29 items. Table 4.5 shows that factor loadings are between .531 and .784. Following the
guideline provided by the scholars (Byrne, 2010; Hair et al., 2010, Kline, 2011), all four factors were renamed as Task and Relationship Conflict (TRC), Process Conflict (PC), Team Trust (TT) and Team Performance (TP), respectively.

This section presents the results of CFA to support the discriminant validity of Task and Relationship Conflict (TRC), Process Conflict (PC), Team Trust (TT) and Team Performance (TP). To achieve the discriminant validity, this study also runs CFA by linking all the constructs together to examine whether these constructs are highly correlated. In the case where the measure of correlation between two constructs is higher than 0.85, one could conclude that the discriminant validity is not achieved (Byrne, 2010; Zainudin, 2012). If the discriminant validity is not achieved, the researcher needs to drop one of those two constructs for further analysis since it is like the mirror of the other (Byrne, 2010; Hair et al., 2010, Kline, 2011; Zainudin, 2012).

From Figure 2, it can be observed that after re-specifying the measurement model, the fitness level has slightly improved [Absolute fit (RMSEA) = .070, Incremental fit (CFI) = .870; and Parsimonious fit (ChiSq/df) = 2.457]. No further modification was necessary for this model.
Table 1: The CFA Results Reporting

<table>
<thead>
<tr>
<th>Construct</th>
<th>Cronbach alpha</th>
<th>CR</th>
<th>AVE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Task and Relationship Conflict (TRC)</td>
<td>0.882</td>
<td>0.904</td>
<td>0.508</td>
</tr>
<tr>
<td>Process Conflict (PC)</td>
<td>0.819</td>
<td>0.835</td>
<td>0.504</td>
</tr>
<tr>
<td>Team Trust (TT)</td>
<td>0.827</td>
<td>0.829</td>
<td>0.513</td>
</tr>
<tr>
<td>Team Performance (TP)</td>
<td>0.819</td>
<td>0.819</td>
<td>0.515</td>
</tr>
</tbody>
</table>

CFA was performed on the data collected from 140 respondents through AMOS (Version 23.0.0), using Maximum Likelihood (ML) estimation (Byrne, 2010). The measurement model of the four extracted variables showed that the overall fit of the model was statistically significant, indicating an inadequate fit between the covariance matrix of the observed data and the implied covariance matrix of the model. Other indices of model fit were also used following the guideline by the scholars (Byrne, 2010; Hair et al., 2010) whereby at least one absolute fit index and one incremental fit index be used in addition to the χ^2 statistic and the associated degree of freedom. Following this guideline, the Normed chi-square (i.e. CMIN/DF), the Comparative Fit Index (CFI) and the Root Mean Square Error of Approximation (RMSEA) were adopted in estimating the model in addition to the χ^2 associated degree of freedom.

However, Zainudin (2016) suggested that before modelling the structural model, the researcher needs to address the issues of unidimensionality, validity and reliability. As per his suggestion, the followings are discussed.

Table 2: CFA Results for the Measurement Models

<table>
<thead>
<tr>
<th>Name of Category</th>
<th>Required Value</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unidimensionality</td>
<td>Factor loading for each item ≥ 0.50</td>
<td>The required level is achieved</td>
</tr>
<tr>
<td>Validity</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Convergent Validity</td>
<td>Average Variance Extracted (AVE) ≥ 0.50</td>
<td>The required level is achieved</td>
</tr>
<tr>
<td>Construct Validity</td>
<td>All fitness indexes for the models meets the required level</td>
<td>The required level is achieved</td>
</tr>
<tr>
<td>Discriminant Validity</td>
<td>Correlation between exogenous constructs is ≤ 0.85</td>
<td>The required level is achieved (refer to table 4.10)</td>
</tr>
<tr>
<td>Reliability</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Internal Reliability</td>
<td>Cronbach alpha ≥ 0.70</td>
<td>The required level is achieved</td>
</tr>
<tr>
<td>Construct Reliability</td>
<td>CR ≥ 0.60</td>
<td>The required level is achieved</td>
</tr>
<tr>
<td>Average Variance Explained (AVE)</td>
<td>AVE ≥ 0.50</td>
<td>The required level is achieved</td>
</tr>
</tbody>
</table>

Structural equation modelling is a comprehensive approach to find the relationship among the factors (Byrne, 2010). In SEM, prior to examine any specific relationship, researcher must determine the overall model fit (Hair et al., 2010). The researcher must either accept or reject the entire model. Hence, before to set off to the path analysis, the study went for measurement model to justify if the model defines the constructs adequately. The similarity between measurement model and the full (path) model is also necessary for depicting the different sorts of validity of the analysis (Byrne, 2010).
The model was re-specified and re-run again using AMOS (Version 23.0). As shown in Figure 3, the goodness-of-fit indices of the revised model were sharply improved as compared to that of the hypothesized model. Thus, indicating that there were statistical discrepancies between the observed covariance matrix of the sample (observed data) and the implied covariance matrix of population (revised hypothesized model). The Normed chi-square (CMIN/DF) showed a good fit for the revised model, with an index less than 3 (i.e. 2.411), supporting the consistency of the data to the revised model. The statistical significance of the χ^2 of the model may be due to the large sample size ($n = 140$).

Moreover, the measure of RMSEA was .068, which is below the recommended cut-off of RMSEA ≤ .08 for the complexity of this revised model (Hair et al., 2010). Thus, RMSEA of .068 indicates lack of any significant difference between the covariance matrix of the sample and the covariance matrix of population. In other words, the revised model adequately fitted the data. The CFI (.879) of the revised model also showed adequacy of the model fit, adding more evidence to support the goodness of fit of the revised model. The AMOS (Version 23.0) text output did not provide any further suggestion to modify the revised model.

A statistical hypothesis, sometimes called confirmatory data analysis, is a hypothesis that is testable on the basis of observing a process that is modeled via a set of random variables. A statistical hypothesis test is a method of statistical inference. Commonly, two statistical data sets are compared, or a data set obtained by sampling is compared against a synthetic data set from an idealized model. A hypothesis is proposed.
for the statistical relationship between the two data sets, and this is compared as an alternative to an idealized null hypothesis that proposes no relationship between two data sets. The comparison is deemed statistically significant if the relationship between the data sets would be an unlikely realization of the null hypothesis according to a threshold probability, the significance level. Hypothesis tests are used in determining what outcomes of a study would lead to a rejection of the null hypothesis for a pre-specified level of significance.

Table 3: Hypothesis Testing (Maximum Likelihood Estimates)

<table>
<thead>
<tr>
<th>Variable</th>
<th>Relationship</th>
<th>Variable</th>
<th>Estimate</th>
<th>S.E.</th>
<th>C.R.</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Team Trust</td>
<td>←</td>
<td>Task and Relationship Conflict</td>
<td>.440</td>
<td>.119</td>
<td>3.713</td>
<td>***</td>
</tr>
<tr>
<td>Task and Relationship Conflict</td>
<td></td>
<td>Team Trust</td>
<td>.468</td>
<td>.084</td>
<td>5.603</td>
<td>***</td>
</tr>
<tr>
<td>Process Conflict</td>
<td></td>
<td>Team Trust</td>
<td>.286</td>
<td>.075</td>
<td>3.823</td>
<td>***</td>
</tr>
<tr>
<td>Team Performance</td>
<td>←</td>
<td>Task and Relationship Conflict</td>
<td>.176</td>
<td>.096</td>
<td>1.831</td>
<td>.067</td>
</tr>
<tr>
<td>Task and Relationship Conflict</td>
<td></td>
<td>Process Conflict</td>
<td>.129</td>
<td>.070</td>
<td>1.842</td>
<td>.065</td>
</tr>
<tr>
<td>Process Conflict</td>
<td>←</td>
<td>Team Trust</td>
<td>.045</td>
<td>.015</td>
<td>3.052</td>
<td>.002</td>
</tr>
</tbody>
</table>

Table 4: Standardized Regression Weights: (Default model)

<table>
<thead>
<tr>
<th>Variable</th>
<th>Relationship</th>
<th>Variable</th>
<th>Estimate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Team Trust</td>
<td>←</td>
<td>Task and Relationship Conflict</td>
<td>.250</td>
</tr>
<tr>
<td>Task and Relationship Conflict</td>
<td></td>
<td>Team Trust</td>
<td>.419</td>
</tr>
<tr>
<td>Process Conflict</td>
<td></td>
<td>Team Trust</td>
<td>.350</td>
</tr>
<tr>
<td>Team Performance</td>
<td>←</td>
<td>Task and Relationship Conflict</td>
<td>.122</td>
</tr>
<tr>
<td>Task and Relationship Conflict</td>
<td></td>
<td>Process Conflict</td>
<td>.141</td>
</tr>
<tr>
<td>Process Conflict</td>
<td>←</td>
<td>Team Trust</td>
<td>.220</td>
</tr>
</tbody>
</table>

The section presented the findings of the data analysis and the results in the University Scientific Research Teams in Jiangsu Province, China context explained by four dimensions [Task and Relationship Conflict (TRC), Process Conflict (PC), Team Trust (TT) and Team Performance (TP)]. Total six hypotheses were also answered by goodness-of-fit indices showing that Task and Relationship Conflict (TRC) and Process Conflict (PC) substantially influence Team Trust (TT) into the Education industry in University Scientific Research Teams in Jiangsu Province, China. Moreover, it also shows the influence of Team Trust (TT) on Team Performance (TP). However, the results did not
support the second and fourth hypothesis that relate to the influence of Task and Relationship Conflict (TRC) on and Team Performance (TP) and the influence of Process Conflict (PC) on Team Performance (TP). The last research hypothesis was also addressed. It was revealed that there is a significant positive reciprocal relationship exists between Task and Relationship Conflict (TRC) and Process Conflict (PC). The main findings of the study are summarized in Table 5.

Table 5: Summary of the Main Findings of the Study

<table>
<thead>
<tr>
<th>H(x)</th>
<th>Hypothesis</th>
<th>Finding</th>
</tr>
</thead>
<tbody>
<tr>
<td>H1</td>
<td>Task and Relationship Conflict (TRC) is positively related to Team Trust (TT)</td>
<td>Accepted</td>
</tr>
<tr>
<td>H2</td>
<td>Process Conflict (PC) is positively related to Team Trust (TT)</td>
<td>Accepted</td>
</tr>
<tr>
<td>H3</td>
<td>Task and Relationship Conflict (TRC) is positively related to Team Performance (TP)</td>
<td>Rejected</td>
</tr>
<tr>
<td>H4</td>
<td>Team Trust (TT) is positively related to Team Performance (TP)</td>
<td>Accepted</td>
</tr>
<tr>
<td>H5</td>
<td>Process Conflict (PC) is positively related to Team Performance (TP)</td>
<td>Rejected</td>
</tr>
<tr>
<td>H6</td>
<td>There is a Reciprocal Relationship between Task and Relationship Conflict (TRC) and Process Conflict (PC)</td>
<td>Accepted</td>
</tr>
</tbody>
</table>

4. Conclusion and Managerial Implications

In conclusion, Team Performance is one of the significant concerns in university scientific research teams in Jiangsu Province, China past studies featured this issue in different sectors or enterprises, yet this study, especially centers the scientific education of university scientific research teams in Jiangsu Province, China. This study expected to research the essential factors that impact the Team Performance in education industry of University Scientific Research Teams in Jiangsu Province, China. There are still a few issues confronted the scientific education in University Scientific Research Teams in Jiangsu Province, China. Accordingly, this research explored the effect of task and relationship conflict, process conflict, team trust, workforce optimization on team performance. Finally, the outcomes found that task and relationship conflict, process conflict, team trust, have noteworthy effect on team performance.

In this study, conceivable executive elements, including Task and Relationship Conflict, learning capacity, knowledge accessibility, Process Conflict, Team Trust, workforce optimization and Team Performance. To date, the present study is one of the not very many studies led in the Chinese world to look at such connections. Henceforth, this study is an endeavored to add to the current knowledge by analyzing and understanding the effect of these free variables on Team Performance as the dependent variable. In the accompanying sub-segments, the commitments of this study are explained.
This study adds to the current assemblage of knowledge in understanding the Team Performance as this is the primary study with the arrangement of such variables. As it were, this study endeavors to expand the understanding of the connection between task and relationship conflict, learning capacity, knowledge accessibility, process conflict, team trust, workforce optimization and team performance in University Scientific Research Teams in Jiangsu Province, China. In light of past studies, a research display was developed from which speculations were detailed and tried. As a rule, the model has gotten experimental help, which improves our hypothetical understanding. The study by and large has made commitments as takes after.

Above all else commitment of this study to the writing is, it offers profound understanding of compound connections of different variables together with regards to university scientific research teams in Jiangsu Province, China. Second, from reviewed literature, it gave a hypothetical understanding. The outcomes found out the positive connection amongst needy and free in University Scientific Research Teams in Jiangsu Province, China.

Third, the current research has given experimental confirmation about the relationship of all study variables relating to the research structure drawn on the premise of previous literature. This study showed the significance of task and relationship conflict, learning capacity, knowledge accessibility, process conflict, team trust, workforce optimization and team performance.

The present study’s outcomes have suggestions for scientific education, leaders and strategy organizers. Right off the bat, this study raises the issue of team performance who are the most critical resource of university scientific research teams in Jiangsu Province, China. What’s more, effects of different variables have likewise been analyzed, including task and relationship conflict, process conflict, team trust and workforce optimization.

Furthermore, this study showed the significance of task and relationship conflict, learning capacity, knowledge accessibility, process conflict, team trust, workforce optimization and team performance. The outcomes demonstrate that the greater part of the variables are critical and are interconnected to each other.

At long last, the present study’s outcomes have critical commitments and suggestions for administrators, professionals, and strategy producers. Again, arrangement creators and leaders of scientific education in University Scientific Research Teams in Jiangsu Province, China should concentrate on the most imperative variables.

As other announced logical research, this study is not without impediments. Notwithstanding the understanding offered, this study has a few impediments that ought to be considered by future studies. At first, this study fuses just scientific education in university scientific research teams in Jiangsu Province, China without thought of different gatherings which have an awesome association with scientific education.

To address the confinement, it is firmly prescribed that longitudinal studies ought to be directed to incorporate different gatherings which have an incredible association with scientific education and to inspect the effect of variables with other interceding or
directing variable. The longitudinal research approach could clarify the perplexing relationship over a drawn out stretch of time and could clarify better the progressions that may create after some time among the variables.

References

Cox, K. (2019). Integrating an Innovation Organizational Culture with Cultural Intelligence in Multicultural Teams: A Case Study of an International Student Team. City University of Seattle.

Yu Yun, Jacqueline Tham, S. M. Ferdous Azam
CONFLICTS ON TEAM TRUST AND TEAM PERFORMANCE AT THE UNIVERSITY SCIENTIFIC RESEARCH TEAMS IN JIANGSU PROVINCE, CHINA: STRUCTURAL EQUATION MODELING APPROACH

Rockstuhl, T., & Ng, K.-Y. (2015). The effects of cultural intelligence on interpersonal trust in multicultural teams Handbook of cultural intelligence (pp. 224-238): Routledge.

Thammasat Review β 18.

