EFFECTS OF 8 WEEKS RESISTANCE TRAINING ON PEAK RUNNING VELOCITY AND HEART RATE DEFLECTION POINT IN SEDENTARY WOMEN

Fabio Luiz Tomiello, Leonardo De Lucca, Rafaella Zulianello Dos Santos, Carl Foster

Abstract


Purpose: Resistance training can result in increased lean mass, maximal strength, muscular power and facilitates similar acute physiological responses and chronic physiological adaptations to traditional aerobic exercises. This study aimed to determine the effects of resistance training on PV and VHRDP in sedentary women. Methods: Sixteen sedentary women were distributed in control group (CG) and Resistance Training Group (RTG). The RTG underwent a training program for major muscle groups four times a week over a period of 8 weeks which consisted of four sets of 8-12 repetition per set. The GC was asked to maintain their usual routines. Participants performed an incremental treadmill test conducted to voluntary exhaustion before and after intervention to assess peak velocity and heart rate performance curve. Results: A 2 (group: RTG, CG) x 2 (time: pre, post) ANOVA revealed a significant interaction for PV (p<0.01) and a trend to VHRDP (p=0.082). A significant main effect of time was found for PV (p=0,0038) and VHRDP (p=0,038). RTG presented a significant increase in the peak velocity (11,65±1,6 vs 13,50±1,5 km.h-1; p<0.01) while CG showed no difference (11,12±0,83 vs 11,00±0,92 km.h-1). RTG significantly improved VHRDP (9,8±1,1 vs 11,2±1,2 km.h-1 ; p<0.01) and CG did not (9,1±0,6 vs 9,3±1,3 km.h-1). Conclusions: The resistance training applied led to improvement in peak velocity and velocity at heart rate deflection point. RT should be prescribed by coaches and instructors as a viable exercise modality to improve aerobic fitness in sedentary females.

 

Article visualizations:

Hit counter

DOI

Keywords


resistance training, peak running velocity, heart rate deflection point

Full Text:

PDF

References


Ahmaidi, S., Hardy, J., Varray, A., Collomp, K., Mercier, J., and C., P. 1993. Respiratory gas exchange indices used to detect the blood lactate accumulation threshold during an incremental exercise test in young athletes. Eur. J. Appl. Physiol. Occup. Physiol. 66: 31–36.

Alberton, C., Kanitz, A., Pinto, S., Antunes, A., Finatto, P., Cadore, E., and Kruel, L. 2010. Determining the anaerobic threshold in water aerobic exercises: a comparison between the heart rate deflection point and the ventilatory method. J Sport. Med Phys Fit. 53: 359–367.

Alvehus, M., Boman, N., Söderlund, K., Svensson, M.B., and Burén, J. 2014. Metabolic adaptations in skeletal muscle, adipose tissue, and whole-body oxidative capacity in response to resistance training. Eur. J. Appl. Physiol. 114(7): 1463–1471. doi:10.1007/s00421-014-2879-9.

Arampatzis, A., De monte, G., Karamanidis, K., Morey-Klapsing, G., Stafilidis, S., and Bruggemann, G. 2006. Influence of the muscle–tendon unit’s mechanical and morphological properties on running economy. J. Exp. Biol. 209(17): 3345–3357. doi:10.1242/jeb.02340.

Ballarin, E., Borsetto, C., and Cellini, M. 1989. Adaptation of the Conconi test to children and adolescents. Int J Sport. Med 10: 334–338.

Beattie, K., Carson, B., and Lyons, M. 2017. The effect of strength training on performance indicators in distance runners. J Strength Cond Res 31(1): 9–23.

Blagrove, R.C., Howatson, G., and Hayes, P.R. 2018. Effects of Strength Training on the Physiological Determinants of Middle- and Long-Distance Running Performance: A Systematic Review. Sport. Med. 48(5): 1117–1149. Springer International Publishing. doi:10.1007/s40279-017-0835-7.

Bodner, M.E., and Rhodes, E.C. 2000. A review of the concept of the heart rate deflection point. Sport. Med. 30(1): 31–46. doi:10.2165/00007256-200030010-00004.

Buchheit, M., Solano, R., and Millet, G.P. 2016. Heart-Rate Deflection Point and the Second Heart-Rate Variability Threshold during Running Exercise in Trained Boys. Pediatr. Exerc. Sci. 19(2): 192–204. doi:10.1123/pes.19.2.192.

Conconi, F., Ferrari, M., Ziglio, P.G., Droghetti, P., and Codecà, L. 1982a. Determination of the anaerobic threshold by a noninvasive field in man. J. Appl. Physiol. 52(4): 869–873.

Conconi, F., Ferrrari, M., Ziglio, P., Droghetti, P., and Codeca, L. 1982b. Determination of the anaerobic threshold by a noninvasive field test in runners. J. Appl. Physiol. 52: 862–873.

Czuba, M., Zając, A., Cholewa, J., Poprzęcki, S., Waśkiewicz, Z., and Mikołajec, K. 2009. Lactate Threshold (D-Max Method) and Maximal Lactate Steady State in Cyclists. J. Hum. Kinet. 21(1): 49–56. doi:10.2478/v10078-09-0006-5.

Dalleau, G., Belli, A., Bourdin, M., and Lacour, J. 1998. The spring-mass model and the energy cost of treadmill running. Eur J Appl Physiol Occup Physiol 77(3): 257–263.

Delevatti, R., Kanitz, A., Alberton, C., Pantoja, P., Marson, E., Pinho, C., Lisboa, S., Bregagnol, L., and Kruel, L. 2015. Heart rate deflection point as an alternative method to identify the anaerobic threshold in patients with type 2 diabetes. Apunt. Med. l’Esport 50(188): 123–128. doi:10.1016/j.apunts.2015.05.001.

Farrell III, J., Lantis, D., Ade, C., Cantrell, G., and Larson, R. 2018. Aerobic exercise supplemented with muscular endurance training improves onset of blood lactate accumulation. J. Strength Cond. Res. 32(5): 1376–1382.

Farrell, J., Lantis, D., Ade, C., Cantrell, G., and Larson, R. 2016. Aerobic Exercise Supplemented with Muscular Endurance Training Improves Onset of Blood Lactate Accumulation. Sport. Med. Rehabil. J. 1(1): 1–6.

Fernandes-da-Silva, J., Castagna, C., Teixeira, A.S., Carminatti, L.J., and Guglielmo, L.G.A. 2016. The peak velocity derived from the Carminatti Test is related to physical match performance in young soccer players. J. Sports Sci. 34(24): 2238–2245. doi:10.1080/02640414.2016.1209307.

Frontera, W.R., Meredith, C.N., O`Reilly, K.P., and Evans, W.J. 1990. Strenght training determinants o VO2max in older men. J Appl Physiol 68: 329–333.

Henritze, J., Weltman, A., Schurrer, R.L., and Barlow, K. 1985. Effects of training at and above the lactate threshold on the lactate threshold and maximal oxygen uptake. Eur. J. Appl. Physiol. Occup. Physiol. 54(1): 84–88. doi:10.1007/BF00426304.

Hickson, R., Dvorak, B., Gorostiaga, E., Kurosski, T., and Foster, C. 1988. Potential for strength and endurance training to amplify endurance performance. J Appl Physiol 65(5): 2285-2290.

Hofmann, P., Pokan, R., Preidler, K., Leitner, H., Szolar, D., Eber, B., and Schwaberger, G. 1994. Relationship between heart rate threshold, lactate turn point and myocardial function. Int. J. Sports Med. 15(5): 232–237. doi:10.1055/s-2007-1021052.

Hollings, M., Mavros, Y., Freeston, J., and Singh, M.F. 2017. The effect of progressive resistance training on aerobic fitness and strength in adults with coronary heart disease: A systematic review and meta-analysis of randomised controlled trials. Prev. Cardiol. 24(12): 1242–1259. doi:10.1177/2047487317713329.

Hopkins, W., Marshall, S., Batterham, A., and Hanin, J. 2009. Progressive statistics for studies in sports medicine and exercise science. Med Sci Sport. Exerc 41(1): 3–13.

Ivy, J., Withers, R., Van Handel, P., Elger, D., and Costill, D. 1980. Muscle respiratory capacity and fibre type as determinants ofthe lactate threshold. J Appl Physiol 48: 523–527.

Kraemer, W., and Ratamess, N. 2004. Fundamentals of Resistance Training: Progression and Exercise Prescription. Med. Sci. Sports Exerc. 36(4): 674–688.

Kubo, K., Kanehisa, H., and Fukunaga, T. 2002. Effects of resistance and stretching training programmes on the viscoelastic properties of human tendon structures in vivo. J Physiol 538(1): 219–226.

Kuipers, H., Verstappen, F., Keizer, H., Geurten, P., and Van Kranenburg, G. 1985. Variability of aerobic performance in the laboratory and its physiological correlates. Int. J. Sports Med. 6: 197–201.

Lantis, D., Farrell III, J., Cantrell, G., and Larson, R. 2017. Eight Weeks of High-Volume Resistance Training Improves Onset of Blood Lactate in Trained Individuals. J. Strength an Cond. Res. 31(8): 2176–2182.

Manoel, F., da Silva, D., Lima, J., and Machado, F. 2017. Peak velocity and its time limit are as good as the velocity associated with VO2max for training prescription in runners. Sport. Med. Int. Open 01(01): E8–E15. doi:10.1055/s-0042-119951.

Mclaughlin, J., Howley, E., Bassett, J., Thompson, D., and EC., F. 2010. Test of classic model for predicting endurance running performance. Med Sci Sport. Exerc 42: 991–997.

Mikkola, J., Rusko, H., Izquierdo, M., and Gorostiaga, E.M. 2012. Neuromuscular and Cardiovascular Adaptations During Concurrent Strength and Endurance Training in Untrained Men. 21: 702–710. doi:10.1055/s-0031-1295475.

Millet, G., Jaouen, B., Borrani, F., and Candau, R. 2002. Effects of concurrent endurance and strength training on running economy and VO2 kinetics. Med Sci Sport. Exerc 34(8): 1351–1359.

Monteiro, E.R., Novaes, J.S., Fiuza, A.G., Portugal, E., Triani, F.S., Bigio, L., Santos, R., Palma, A., and Corrêa Neto, V.G. 2018. Behavior of Heart Rate Variability After 10 Repetitions Maximum Load Test for Lower Limbs. Int. J. Exerc. Sci. 11(6): 834–843. Available from http://www.ncbi.nlm.nih.gov/pubmed/29997739%0Ahttp://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC6033492.

Moreira, S., Oliveira, R., Nakamura, F., and Campbell, C. 2010. Lactate threshold prediction by blood glucose and rating of perceived exertion in people with type 2 diabetes. Percept. Mot. Skills 111(2): 365–378.

Ratamess, N., Alvar, B., Evetoch, T., Housh, T., Kibler, W., Kraemer, W., and Triplett, N. 2009. American College of Sports Medicine position stand. Progression models in resistance training for healthy adults. Med. Sci. Sports Exerc. 41(3): 687–708. doi:10.1249/MSS.0b013e3181915670.

Siahkouhian, M., and Meamarbashi, A. 2013. Advanced methodological approach in determination of the heart rate deflection point: S.Dmax versus L.Dmax methods. J Sport. Med Phys Fit. 53(27–33).

Simão, R., Farinatti, P., Polito, M., Maior, A., and Fleck, S. 2005. Influence of exercise order on the number of repetitions performed and perceived exertion during resistance exercises. J Strength Cond Res. 19(1): 152–156.

Sjodin, B., Jacobs, I., and Svedenhag, J. 1982. Changes in onset of blood lactate accumulation(OBLA) and muscle enzymes after training at OBLA. Eur J Appl Physiol 49: 45–57.

Staron, R.S., Leonardi, M.J., Karapondo, D.L., Malicky, E.S., Falkel, J.E., Hagerman, F.C., and Hikida, R.S. 1991. Strength and skeletal muscle adaptations in heavy-resistance-trained women after detraining and retraining. J. Appl. Physiol. 70(2): 631–640. doi:10.1152/jappl.1991.70.2.631.

Vachon, J., Basset Jr, D., and Clarke, S. 1999. Validity of the heart rate deflection point as a predictor of lactate threshold during running. J. Appl. Physiol. 87(1): 452–459.




DOI: http://dx.doi.org/10.46827/ejpe.v0i0.2824

Refbacks

  • There are currently no refbacks.


Copyright (c) 2020 Fabio Luiz Tomiello, Leonardo De Lucca, Rafaella Zulianello Dos Santos, Carl Foster

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright © 2015-2022. European Journal of Physical Education and Sport Science (ISSN 2501 - 1235) is a registered trademark of Open Access Publishing Group. All rights reserved.


This journal is a serial publication uniquely identified by an International Standard Serial Number (ISSN) serial number certificate issued by Romanian National Library (Biblioteca Nationala a Romaniei). All the research works are uniquely identified by a CrossRef DOI digital object identifier supplied by indexing and repository platforms. All authors who send their manuscripts to this journal and whose articles are published on this journal retain full copyright of their articles. All the research works published on this journal are meeting the Open Access Publishing requirements and can be freely accessed, shared, modified, distributed and used in educational, commercial and non-commercial purposes under a Creative Commons Attribution 4.0 International License (CC BY 4.0).