QUESTIONS SUR LA FORMATION DES ENSEIGNANTS DE L’ÉCOLE MATERNELLE ET PRIMAIRE AUX TECHNOLOGIES DE L'INFORMATION ET DE LA COMMUNICATION EN ÉDUCATION / QUESTIONS ABOUT THE TEACHERS TRAINING OF THE KINDERGARTEN AND PRIMARY SCHOOL IN TECHNOLOGIES OF INFORMATION AND COMMUNICATION IN EDUCATION

Zebun Arun

Abstract


Cet article présente une étude des idées des enseignants de sciences physiques et naturelles sur l'intégration de l'usage des Technologies de l'Information et de la Communication en Éducation et aussi sur la formation à ce domaine. Cette étude est menée à partir d'un entretien et à la lumière du cadre de la didactique des sciences, avant et après la réalisation d’un séminaire sur l’utilisation des nouvelles technologies dans l’enseignement à l’école maternelle et primaire. Les résultats de cette enquête ont montré qu'après le séminaire, les enseignants avaient changé d'avis sur les problèmes liés à l'utilisation des TIC à l'école et sur le type de formation à laquelle ils souhaitaient participer.

This article presents a study of the ideas of the teachers of physical and natural sciences on the integration of the use of the Information and Communication Technologies in Education and also on the training in this area. This study is carried out from an interview and in the light of the framework of the didactics of sciences, before and after conducting a seminar on the use of new technologies for teaching in kindergarten and primary school. The results of this survey showed that after the seminar, the teachers changed views on the problems related to the use of the ICT in the school and also on the type of training they wanted to participate in.

 

Article visualizations:

Hit counter

DOI

Keywords


formation des enseignants, sciences physiques et naturelles, technologies de l'information et de la communication en éducation / teacher training, physical and natural sciences, technologies of information and communication in education

Full Text:

PDF

References


Ahaji, K., El Hajjami, A., Ajana, L., El Mokri, A., & Chikhaoui, A. (2008). Analyse de l’effet d’intégration d’un logiciel d’optique géométrique sur l’apprentissage d’élèves de niveau baccalauréat sciences expérimentales. EpiNet, 101. Retrieved from http://www.epi.asso.fr/revue/articles/a0801a.htm.

Arun, Z. (2017). Formation des enseignants et recherche en didactique des sciences. European Journal of Education Studies, 3(9), 206-216.

Arun, Z. (2018). Questions sur la formation initiale des enseignants en didactique des sciences: une vision alternative. European Journal of Alternative Education Studies, 3(1), 44-53.

Baser, M. (2006). Fostering conceptual change by cognitive conflict based instruction on students’ understanding of Heat and Temperature concepts. Eurasia Journal of Mathematics, Science and Technology Education, 2(2), 96-114.

Brasel, H. (1987). The effect of real-time laboratory graphing on learning graphic representations of distance and velocity. Journal of Research in Science Teaching, 24(4), 385-395.

Bronckart, J. P., & Plazaola Giger, I. (1998). La transposition didactique. Histoire et perspectives d’une problematique fondatrice. Pratiques, 97/98, 35-58.

Castro, D. (2013). Light mental representations of 11-12 year old students. Journal of Social Science Research, 2(1), 35-39.

Castro, D. (2018). Schèmes et trajectoires pour la formation des enseignants des sciences. European Journal of Education Studies, 4(3), 260-269.

Chien, Y.-T., & Chang, C.-Y. (2011). Comparison of different instructional multimedia designs for improving student science-process skill learning. Journal of Science Education and Technology, 21(1), 106–113.

Doering, A., Scharber, C., Miller, C., & Veletsianos, G. (2009). Geothentic: designing and assessing with technological pedagogical content knowledge. Contemporary Issues in Technology and Teacher Education, 9(3), 316-336.

Droui, M., & El Hajjami, A. (2014). Simulations informatiques en enseignement des sciences : apports et limites. EpiNet, 164. Retrieved from http://www.epi.asso.fr/revue/articles/a1404e.htm.

El Abboud, G. (2014). L’introduction des TIC dans les pratiques pédagogiques des enseignants de français. Formation et Profession, 23(1), 1-10.

Garbett, D. (2011). Constructivism deconstructed in Science Teacher Education. Australian Journal of Teacher Education, 36(6), 36-49.

Grigorovitch, A. (2014). Children’s misconceptions and conceptual change in Physics Education: the concept of light. Journal of Advances in Natural Sciences, 1(1), 34-39.

Grigorovitch, A. (2015). Teaching optics perspectives: 10-11 year old pupils' representations of light. International Education & Research Journal, 1(3), 4-6.

Guir, R. (2002). Pratiquer les TICE. Former les enseignants et les formateurs à de nouveaux usages. Bruxelles: De Boeck.

Hammond, T. C., & Manfra, M. (2009). Giving, prompting, making: aligning technology and pedagogy within TPACK for social studies instruction. Contemporary Issues in Technology and Teacher Education, 9(2), 160-185.

Harris, J. B., & Hofer, M. J. (2009). Instructional planning activity-types as vehicles for curriculum-based TPACK development. In C. D. Maddux (Ed.), Research highlights in technology and teacher education (pp. 99-108). Chesapeake, VA: Society for Information Technology.

Henze, I., van Driel, J. H., & Verloop, N. (2007). Science teachers’ knowledge about teaching models and modelling in the context of a new syllabus on public understanding of science. Research in Science Education, 37(2), 99-122.

Kampeza, M., & Ravanis, K. (2009). Transforming the representations of preschool-age children regarding geophysical entities and physical geography. Review of Science, Mathematics and ICT Education, 3(1), 141-158.

Kampeza, M., Vellopoulou, A, Fragkiadaki, G., & Ravanis, K. (2016). The expansion thermometer in preschoolers’ thinking. Journal of Baltic Science Education, 15(2), 185-193.

Koehler, M. J., & Mishra, P. (2008). Introducing TPCK. AACTE Committee on Innovation and Technology (Ed.), The handbook of technological pedagogical content knowledge (TPCK) for educators (pp. 3-29). Mahwah, NJ: Lawrence Erlbaum Associates.

Kokologiannaki, V., & Ravanis, K. (2013). Greek sixth graders mental representations of the mechanism of vision. New Educational Review, 33(3), 167-184.

Kola, A. J. (2013). Effective teaching and learning in Science Education through Information and Communication Technology. IOSR Journal of Research & Method in Education, 2(5), 43-47.

Lebrun, J., Lenoir, Y., Oliveira, A. A., & Chalghoumi, H. (2005). La recherche sur les pratiques enseignantes effectives au préscolaire et au primaire : regard critique sur leurs contributions à l’élaboration d’un référentiel professionnel. In C. Gervais & L. Portelance (Éd.), Des savoirs au cœur de la profession enseignante. Contextes de construction et modalités de partage (pp. 265-285). Sherbrooke : Éditions du CRP.

Lefdaoui, Y., Boubker, N., & Nafil, K. (2014). Jeux pour apprendre et enseigner l’éducation au développement durable : explorer la pertinence du jeu et l’apprentissage expérientiel pour la durabilité. Educational Journal of the University of Patras UNESCO Chair, 1(2), 134-147.

Lin, L., & Atkinson, R. K. (2011). Using animations and visual cueing to support learning of scientific concepts and processes. Computers & Education, 56(3), 650– 658.

Mahdi, K., Laafou, M., & Janati-Idrissi, R. (2015). Qualifications of Physics teachers in ICT to integrate the use of ICT in Moroccan Physics Schools: obstacles and solutions. Journal of Educational and Social Research, 5(1), 177-182.

Mahdi, K., Laafou, M., & Idrissi, R. (2018). L’impact des formations continues à distance aux enseignants des sciences physiques dans des logiciels de simulation informatique. Journal for Educators, Teachers and Trainers, 9(1), 2)41.

Mujawamariya, D. (2000). De la nature du savoir scientifique à l’enseignement des sciences : l’urgence d’une approche constructiviste dans la formation des enseignants de sciences. Formation et Profession, 28(2), 148-163.

Nertivich, D. (2013). Magnetic field mental representations of 15-16 year old students. Journal of Advances in Physics, 2(1), 53-58.

Nertivich, D. (2016). Représentations des élevés de 11-12 ans pour la formation des ombres et changement conceptuel. International Journal of Progressive Sciences and Technologies, 3(2), 103-107.

Ntalakoura, V., & Ravanis, K. (2014). Changing preschool children’s representations of light: a scratch based teaching approach. Journal of Baltic Science Education, 13(2), 191-200.

Pedrosa, M. A., & Dias, M. H. (2000). Chemistry textbook approaches to chemical equilibrium and student alternative conceptions. Chemistry Education: Research and Practice in Europe 1, 227-236.

Peeraer, J., & Petegem, P. V. (2010). Factors influencing integration of ICT in Higher Education in Vietnam. In Proceedings of Global Learn Asia Pacific (pp. 916–924). Penang, Malaysia: AACE.

Ravanis, K. (2005). Les Sciences Physiques à l’école maternelle: éléments théoriques d’un cadre sociocognitif pour la construction des connaissances et/ou le développement des activités didactiques. International Review of Education, 51(2/3), 201-218.

Ravanis, K. (2009). La transformación didáctica: de las materias académias a las prácticas escolares. In G. Pappas (Ed.), Actas de congreso “La lengua griega en América Latina” (pp. 143-149). Buenos Aires-Patras: Universidad de Patras.

Ravanis, K., & Boilevin, J.-M. (2009). A comparative approach to the representation of light for five-, eight- and ten-year-old children: didactical perspectives. Journal of Baltic Science Education, 8(3), 182-190.

Ravanis, K., & Kaliampos, G. (2018). Mental representations of 14-15 years old students about the light propagation time. Jurnal Pendidikan Progresif, 8(2), 44-52.

Richardson, V. (1997). Constructivist teaching and teacher education: theory and practice. In V. Richardson (Ed.), Constructivist teacher education: Building a world of new understandings (pp. 3-14). London: Falmer Press.

Rozenszaijn, R., & Yarden, A. (2014). Expansion of biology teachers’ Pedagogical Content Knowledge (PCK) during a long-term professional development program. Research in Science Education, 44, 189–213.

Sharp, J. S., Glover, P. M., & Moseley, W. (2007). Computer based learning in an undergraduate physics laboratory: interfacing and instrument control using Matlab. European Journal of Physics, 28(3), 1-12.

Shulman, L. S. (1986). Those who understand: Knowledge growth in teaching. Educational Researcher, 15, 4-14.

Shulman, L. S. (1987). Knowledge and teaching: Foundations of the new reform. Harvard Educational Review, 57, 1-22.

Siabeycius, J., & Poicin, D. (2012). How ICT can enhance the attractiveness of Mathematics and Physics in Primary School. Problems of Education in the 21st Century, 50, 101–107.

Skamp, K. (2008). Teaching primary science constructively. Victoria: Thompson Learning Australia.

Stoica, I., Moraru, S., & Miron, C. (2010). An argument for a paradigm shift in the science teaching process by means of educational software. Procedia – Social and Behavioral Sciences, 2(2), 4407-4411.

Tin, P. S. (2016). Peuvent-ils les enfants de l’âge préscolaire construire un modèle pour la flottaison et l’immersion? International Journal of Progressive Sciences and Technologies, 4(2), 72-76.

Vellopoulou, A., & Ravanis, K. (2010). A methodological tool for approaching the didactic transposition of the natural sciences in kindergarten school: the case of the “states and properties of matter” in two Greek curricula. Review of Science, Mathematics and ICT Education, 4(2), 29-42.

Vellopoulou, A., & Ravanis, K. (2012). From the formal curriculum to the lesson planning: the didactic transposition kindergarten teachers’ carry out as they plan to teach dissolution. Skholê, 17, 71-76.

Voutsinos, C. (2013). Teaching Optics: light sources and shadows. Journal of Advances in Physics, 2(2), 134-138.

Windschitl, M., Thompson, J., & Braaten, M. (2008). How novice science teachers appropriate epistemic discourses around model-based inquiry for use in classrooms. Cognition and Instruction, 26, 310-378.


Refbacks

  • There are currently no refbacks.


Copyright © 2015-2018. European Journal of Open Education and E-learning Studies (ISSN 2501-9120) is a registered trademark of Open Access Publishing GroupAll rights reserved.

This journal is a serial publication uniquely identified by an International Standard Serial Number (ISSN) serial number certificate issued by Romanian National Library (Biblioteca Nationala a Romaniei). All the research works are uniquely identified by a CrossRef DOI digital object identifier supplied by indexing and repository platforms.

All the research works published on this journal are meeting the Open Access Publishing requirements and can be freely accessed, shared, modified, distributed and used in educational, commercial and non-commercial purposes under a Creative Commons Attribution 4.0 International License (CC BY 4.0).