PRIMARY SCHOOL TEACHER’S PRACTICES AND STUDENT’S MENTAL REPRESENTATIONS: THE LEARNING OBJECTS OPTION

Evgenia-Motya Sotirova

Abstract


This research focuses on the study of the integration of physical science Learning Objects by primary school teachers. In this paper, we present the results of an empirical study to identify the views of teachers on the quality and adaptation of Learning Objects to mental representations of children to the physical world. The research was carried out using a questionnaire that consisted of 6 questions. The results show that the Learning Objects used are relevant for the elaboration of representations of primary children and that the teachers’ training in this subject is not enough.

Article visualizations:

Hit counter


Keywords


learning objects, primary school, didactics, representations, science education

Full Text:

PDF

References


Arun, Z. (2019). Questions sur la formation des enseignants de l’école maternelle et primaire aux technologies de l'information et de la communication en éducation. European Journal of Open Education and E-learning Studies, 4(1), 10-21.

Bahar, M. (1999). Investigation of biology students’ cognitive structure through word association tests, mind maps and structural communication grids. PhD thesis, University of Glasgow, UK.

Bellegarde, K., Boyaval, J., & Alvarez, J. (2019). S’initier à la robotique/informatique en classe de grande section de maternelle. Une expérimentation autour de l’utilisation du robot Blue Bot comme jeux sérieux. Review of Science, Mathematics and ICT Education, 13(1), 51-72.

Boilevin, J.-M., & Ravanis, K. (2007). L’éducation scientifique et technologique à l’école obligatoire face à la désaffection: recherches en didactique, dispositifs et références. Skholê, HS(1), 5-11.

Barritt, C., & Alderman, F. (2004). Creating a reusable learning objects strategy: leveraging information and learning in a knowledge economy. San Francisco: Pfeiffer.

Castro, D. (2019). Approches didactiques à l’école maternelle : la numérique et la traditionnelle au cas de la lumière. European Journal of Open Education and E-learning Studies, 4(1), 113-123.

Cuban, L. (2001). Oversold and underused: Computers in the classroom. Cambridge, MA: Harvard University Press.

Daniels, J. S. (2002). “Foreword” in Information and Communication Technology in Education. A Curriculum for schools and programme for teacher development. Paris: UNESCO.

Dedes, C., & Ravanis, K. (2009). History of science and conceptual change: the formation of shadows by extended light sources. Science & Education, 18(9), 1135-1151.

Delclaux, M., & Saltiel, E. (2013). Caractéristiques d’un enseignement des sciences fondé sur l’investigation et évaluation de dispositifs d’accompagnement des enseignants. Review of Science, Mathematics & ICT Education, 7(2), 35-51.

Dodani, M. (2002). The dark side of object learning: Learning Objects. Journal of Object Technology, 1(5), 37-42.

Flecknoe, M. (2002). How can ICT help us to improve education? Innovations in Education & Teaching International, 39(4), 271-280

Fragkiadaki, G. & Ravanis, K. (2015). Preschool children’s mental representations of clouds. Journal of Baltic Science Education, 14(2), 267-274.

Fragkiadaki, G. & Ravanis, K. (2016). Genetic research methodology meets Early Childhood Science Education Research: a Cultural-Historical study of child’s scientific thinking development. Cultural-Historical Psychology, 12(3), 310-330.

Friesen, Ν. (2001). What are Educational Objects? Interactive Learning Environments, 9(3), 219-230.

Gibbons, A. S., Nelson, J., & Richards, R. (2000). The nature and origin of instructional objects. In D. A. Wiley (Ed.), The instructional use of learning objects (pp. 25-58). Bloomington: Association for Instructional Technology and Association for Educational Communications and Technology.

Grigorovitch, A. (2016). Les Objets d’Apprentissage de sciences face aux représentations des enfants dans les pratiques des enseignants de l’école préscolaire. International Journal of Progressive Sciences and Technologies, 4(1), 11-16.

Grigorovitch, A., & Nertivich, D. (2017). Représentations mentales des élevés de 10-12 ans sur la formation des ombres. European Journal of Education Studies, 3(5), 150-160.

Hashweh, M. Z. (1986). Toward an explanation of conceptual change. European Journal of Science Education, 8(3), 229-249.

Hoang, V. (2020). 14 year old student representations related to the color: a teaching intervention. European Journal of Alternative Education Studies, 5(1), 44-53.

Johsua, S., & Dupin, J.-J. (1993). Introduction à la didactique des sciences et des mathématiques. Paris: PUF.

Kada, V., & Ravanis, K. (2016). Creating a simple electric circuit with children between the ages of five and six. South African Journal of Education, 36(2), 1-9.

Kaliampos, G. (2015). A small scale, qualitative study on exploring alternative conceptions of mechanics in students with autism. Educational Journal of the University of Patras UNESCO Chair, 2(2), 112-122.

Kambouri-Danos, M., Ravanis, K., Jameau, A., & Boilevin, J.-M. (2019). The water state changes in 5-6 years old children's thinking: the construction of a precursor model. Early Childhood Education Journal, 47(4), 475-488.

Kay, R., & Knaack, L. (2007). Evaluating the use of Learning Objects for secondary school science. Journal of Computers in Mathematics and Science Teaching, 26(4), 261-289.

Kocakülah, A. (2006). The effect of traditional teaching on primary, secondary and university students’ conceptual understanding of image formation and colours. Unpublished Ph.D. dissertation, Balıkesir University, Turkey.

Liu, X., & Tang, L. (2004). The progression of students’ conceptions of energy: A cross‐grade, cross‐cultural study. Canadian Journal of Science, Mathematics and Technology Education, 4(1), 43-57.

Marx, R. W., & Harris, C. J. (2006). No child left behind and science education: Opportunities, challenges, and risks. The Elementary School Journal, 106(5), 467-478.

Merrill, D. (1998). Knowledge Objects. CBT Solutions, Mar/Apr 1998, 1-11.

Monroy-Hernández, A, & Resnick, M. (2008). Empowering kids to create and share programmable media. Interactions, 15(2), 50-53.

Mooij, T. (2007). Design of educational and ICT conditions to integrate differences in learning: contextual learning theory and a first transformation step in early education. Computers in Human Behaviour, 23(3), 1499--1530.

Muzio, J., Heins, T., & Mundell R. (2002). Experiences with reusable E-learning objects: From theory to practice. The Internet and Higher Education, 5(1), 21-34.

Norgy, K. (2019). Robotique pédagogique à l’école primaire: quelle activité des élèves de Classe Préparatoire (6-7 ans) et quels apprentissages dans une séquence conçue par l’enseignant ? Review of Science, Mathematics and ICT Education, 13(1), 93-110.

Norman, S., & Porter, D. (2007). Designing Learning Objects for online learning. Vancouver, BC, Canada: Knowledge Series.

Norton, M. (1996). Media objects. In P. Northrup (Ed.), Learning Objects for instruction: design and evaluation (pp. 4-18). New York: Information Science Publishing

Ntalakoura, V., & Ravanis, K. (2014). Changing preschool children’s representations of light: a scratch based teaching approach. Journal of Baltic Science Education, 13(2), 191-200.

Quinn, C., & Hobbs, S. (2000). Learning objects and instructional components. Educational Technology and Society, 3(2), 13-20.

Ravanis, K. (1994). The discovery of elementary magnetic properties in pre-school age. A qualitative and quantitative research within a piagetian framework. European Early Childhood Education Research Journal, 2(2), 79-91.

Ravanis, K. (2005). Les Sciences Physiques à l’école maternelle: éléments théoriques d’un cadre sociocognitif pour la construction des connaissances et/ou le développement des activités didactiques. International Review of Education, 51(2/3), 201-218.

Ravanis, K. (2017). Early Childhood Science Education: state of the art and perspectives. Journal of Baltic Science Education, 16(3), 284-288.

Rodriguez, J., & Castro, D. (2016). Changing 8-9 year-old pupil’s mental representations of light: a metaphor based teaching approach. Asian Education Studies, 1(1), 40-46.

Sasaki, H. (2019). An investigation of blended learning in at-home and in-school education of information ethics using tablet PCs. Journal of Physics: Conference Series, 1280, 032044.

Software and Information Industry Association (2002). Report on the effectiveness of technology in schools. Washington, DC: SIIA.

Sotirova, E.-M. (2017). L’apprentissage en sciences expérimentales: la recherche et l’enseignement. European Journal of Education Studies, 3(12), 188-198.

Tin, P. S. (2018). Élaboration expérimentale des représentions mentales des élèves de 16 ans sur les concepts thermiques. European Journal of Education Studies, 4(7), 141-150.

UNESCO (2002). Information and Communication Technology in Education – A Curriculum for Schools and Programme for Teacher Development. Paris: UNESCO

Van Assche, F., & Vuorikari, R. (2006). A framework for quality of learning resources. In U. Ehlers & J. M. Pawlowski (Eds.), European handbook for quality and standardization in E-Learning (pp. 443-456). Berlin: Springer.

Voutsinos, C. (2013). Teaching Optics: Light sources and shadows. Journal of Advances in Physics, 2(2), 134-138.

Yashwantrao, R., Bholoa, A., Watts, M., Nadal, P. S. (2018). Teaching and learning physics using technology: Making a case for the affective domain. Education Inquiry, 9(2), 210-236.




DOI: http://dx.doi.org/10.46827/ejoe.v5i2.3327

Refbacks

  • There are currently no refbacks.


Copyright © 2016-2023. European Journal of Open Education and E-learning Studies (ISSN 2501-9120) is a registered trademark of Open Access Publishing GroupAll rights reserved.

This journal is a serial publication uniquely identified by an International Standard Serial Number (ISSN) serial number certificate issued by Romanian National Library (Biblioteca Nationala a Romaniei). All the research works are uniquely identified by a CrossRef DOI digital object identifier supplied by indexing and repository platforms.

All the research works published on this journal are meeting the Open Access Publishing requirements and can be freely accessed, shared, modified, distributed and used in educational, commercial and non-commercial purposes under a Creative Commons Attribution 4.0 International License (CC BY 4.0).