APPRENTISSAGE DES ÉLÈVES DE COLLÈGE MAROCAIN DU CONCEPT D’ION EN LIEN AVEC LA TRAME CONCEPTUELLE (ATOME, MOLÉCULE, ÉLECTRON, CHARGE) / LEARNING OF MOROCCAN PUPILS IN THE THIRD COLLEGE YEAR OF THE ION CONCEPT IN CONNECTION WITH THE CONCEPTUAL TRAM (ATOM, MOLECULE, ELECTRON, CHARGE)

Ali Ouasri, Konstantinos Ravanis

Abstract


Dans cet article, ont été analysées les difficultés des élèves marocains (14-16 ans) de troisième année de secondaire collégial à propos de l’apprentissage du concept d’ion en lien avec les notions constituant la trame conceptuelle (atome, molécule, électron, charge). Tout d’abord, nous avons développé un cadre conceptuel portant sur les difficultés d’apprentissage et les conceptions alternatives qu’ont faites les élèves à propos des concepts chimiques en général, et les concepts faisant partie de la trame conceptuelle d’ions (atome, molécule, électron, charge) en particulier. Puis, nous avons fait passer un questionnaire aux élèves en vue de vérifier s’ils sont capables d’associer des critères symboliques et microscopiques aux espèces chimiques: ions, atomes, et molécules. Les difficultés qu’éprouvent les élèves à apprendre des concepts abstraits tels l’atome l’ion, l’anion, le cation, l’ion monoatomique, et l’ion polyatomique, peuvent être dues aux conceptions alternatives, et aux applications heuristiques chez ces élèves à propos de ces concepts. Ce qui entraine chez les élèves des erreurs de raisonnement, que nous avons tenté de les classifier selon la typologie du sens commun (Commonsense Reasoning) de Talanquer.

In this article, the difficulties of Moroccan pupils (14-16 years old) of the third year of college school were analyzed in the learning of the ion concept in connection with the concepts constituting the conceptual tram (atom, molecule, electron, charge). Firstly, we have developed a conceptual framework dealing with learning difficulties and the alternative conceptions that pupils have made about chemical concepts in general, and the concepts involved in the conceptual tram of ions (atom, molecule, electron, charge). Then, we passed a questionnaire to the pupils in order to check if they are able to associate symbolic and microscopic criteria with the chemical species: ions, atoms, and molecules. The difficulties of pupils in the learning of abstract concepts such as the atom, ion, anion, cation, monatomic ion and polyatomic ion, may be due to alternative conceptions, and heuristic applications that have the pupils about these concepts. This leads to errors of reasoning at pupils, which we have tried to classify according to the commonsense typology of Talanquer.

 

 

Article visualizations:

Hit counter

DOI

Keywords


conceptions alternatives, enseignement secondaire, enseignement de la chimie, concept d’ion, trame conceptuelle / alternative conceptions, secondary education, chemistry teaching, ion concept, conceptual tram

Full Text:

PDF

References


Albanese, A., & Vicentini, M. (1997). Why do we believe that an atom is colourless? Reflections about the teaching of the particle model. Science and Education, 6(3), 251-261.

Al-Kunifed, A., Good, R., & Wandersee, J. (1993). Investigation of high school chemistry students’ concepts of chemical symbol, formula, and equation: Students’ prescientific conceptions (ERIC Document, ED 376020).

Astolfi, J.-P., Darot, É., Ginsburger-Vogel, Y., & Toussaint, J. (2008). Mots-clés de la didactique des sciences (2e éd.). Bruxelles: de Boeck Université.

Bodner, G. M. (1991). I have found you an argument: The conceptual knowledge of beginning chemistry graduate students. Journal of Chemical Education, 68(5), 385-388.

Coll, R. K., & Taylor, N. (2001). Alternative conceptions of chemical bonding held by upper secondary and tertiary students. Research in Science and Technological Education, 19(2), 171-191.

Coll, R. K., &Treagust, D. F. (2001). Learners' mental models of chemical bonding. Research in Science Education, 31(3), 357-382.

Coll, R. K., & Treagust, D. F. (2003). Learners' mental models of metallic bonding: A cross-age study. Science Education, 87(5), 685-707.

Cormier, C. (2013). A novel typology for alternative conceptions in postsecondary chemistry identified by a two-tier diagnostic instrument. Communication présentée au 2013 NARST Annual International Conference, San Juan, Puerto Rico.

De Posada, J. M. (1997). Conceptions of high school students concerning the internal structure of metals and their electric conduction: Structure and evolution. Science Education, 81(4), 445-467.

Del Pozo, R. M. (2001). Prospective teachers' ideas about the relationships between concepts describing the composition of matter. International Journal of Science Education, 23, 353-371.

diSessa, A. (1993). Toward an epistemology of physics. Cognition and Instruction, 10(2/3), 105-225.

Ergazaki, M., & Andriotou, I. (2007). À propos des raisonnements des enfants d’âge préscolaire concernant les interventions humaines sur les plantes de la forêt : Le cas de l’abattage. Revue Skhole, HS(1), 13-19.

Fragkiadaki, G., & Ravanis, K. (2015). Preschool children’s mental representations of clouds. Journal of Baltic Science Education, 14(2), 267-274.

García Franco, A., & Taber, K. S. (2009). Secondary students' thinking about familiar phenomena: Learners' explanations from a curriculum context where 'particles' is a key idea for organising teaching and learning. International Journal of Science Education, 31(14), 1917-1952.

Garnett, P. J., Garnett, P. J., & Hackling, M. W. (1995). Students' alternative conceptions in chemistry: A review of research and implications for teaching and learning. Studies in Science Education, 25, 69-95.

Gilbert, J. K., & Treagust, D. F. (2009). Macro, submicro, and symbolic representations and the relationship between them: Key models in chemical education. In J. K. Gilbert & D. F. Treagust (Dir.), Multiple Representations in Chemistry Education (pp. 1-8). The Netherlands: Springer.

Grayson, D. J., Anderson, T. R., & Crossley, L. G. (2001). A four-level framework for identifying and classifying student conceptual and reasoning difficulties. International Journal of Science Education, 23(6), 611-622.

Harrison, A. G., & Treagust, D. F. (2002). The particulate nature of matter: Challenges in understanding the submicroscopic world. In J. K. Gilbert, O. De Jong, R. Justi & D. F. Treagust (Dir.), Chemical education: Towards a research-based practice (pp. 189-212). The Netherlands: Kluwer Academic Publishers.

Hartley, L. M., Wilke, B. J., Schramm, J. W., D'Avanzo, C., & Anderson, C. W. (2011). College students' understanding of the carbon cycle: Contrasting principle-based and informal reasoning. BioScience, 61(1), 65-75.

Herron, J. D. (1996). The chemistry classroom: Formulas for successful teaching. Washington, DC: American Chemical Society.

Johnstone, A. H. (1982). Macro-and microchemistry. School Science Review, 64, 377-379.

Kaliampos, G., & Ravanis, K. (2019). Thermal conduction in metals: mental representations in 5-6 years old children’s thinking. Jurnal Ilmiah Pendidikan Fisika ‘Al-BiRuNi’, 8(1), 1-9.

Kampourakis, K., & Zogza, V. (2009). Preliminary evolutionary explanations: A basic framework for conceptual change and explanatory coherence in evolution. Science & Education, 18, 1313-1340.

Keig, P. F., & Rubba, P. A. (1993).Translation of representations of the structure of matter and its relationship to reasoning, gender, spatial reasoning, and specific prior knowledge. Journal of Research in Science Teaching, 30(8), 883-903.

Laugier, A., & Dumon, A. (2004). L’équation de réaction: Un nœud d’obstacles difficilement franchissable. Chemistry Education Research and Practice, 5(1), 51-68.

Maeyer, J., & Talanquer, V. (2010). The role of intuitive heuristics in students' thinking: Ranking chemical substances. Science Education, 94(6), 963-984.

McClary, L. M., & Talanquer, V. (2011). College chemistry students' mental models of acids and acid strength. Journal of Research in Science Teaching, 48(4), 396-413.

Mzoughi-Khadhraoui, I., & Dumon, A. (2012). L’appropriation par des élèves tunisiens débutants du langage permettant de représenter la réaction chimique. Recherches en Didactique des Sciences et des Technologies, 6, 89-118.

Mulford, D. R., & Robinson, W. R. (2002). An inventory for alternate conceptions among first-semester general chemistry students. Journal of Chemical Education, 79(6), 739-744.

Nicoll, G. (2001). A report of undergraduates' bonding misconceptions. International Journal of Science Education, 23(7), 707-730.

Othman, J., Treagust, D. F., & Chandrasegaran, A. L. (2008). An investigation into the relationship between students' conceptions of the particulate nature of matter and their understanding of chemical bonding. International Journal of Science Education, 30(11), 1531-1550.

Özmen, H. (2004). Some student misconceptions in chemistry: A literature review of chemical bonding. Journal of Science Education and Technology, 13(2), 147-159.

Ouasri, A. (2016). Study of the appropriation by pupils of second Baccalaureate year of knowledge objects relating to acide-bases titrations. Chemistry: Bulgarian Journal of Sciences Education, 25(6), 695-717.

Ouasri, A. (2017). Study of Moroccan pupils’ difficulties at second Baccalaureat year in solving chemistry problems relating to reactivity of ethanoate ions and to Copper-Aluminium cell. Chemistry Education Research and Practice, 18, 737-748.

Ouasri, A. (2019a). Study of Moroccan pupils’ skills in solving chemistry problems at first year of high-school. Chemistry: Bulgarian Journal of Sciences Education, 28, 351-383.

Ouasri, A. (2019b). Résolution de problèmes et courants théoriques en éducation: Cas de la physique et de la chimie. Latvia: Éditions Universitaires Européennes.

Pfundt, H., & Duit, R. (2009). Bibliography: Students' alternative frameworks and science education (9e éd.). Kiel, Germany: University of Kiel.

Piburn, M. D. (1990). Reasoning about logical propositions and success in science. Journal of Research in Science Teaching, 27(9), 887-900.

Ravanis, K. (2009). La transformación didáctica: de las materias académias a las prácticas escolares. In G. Pappas (Ed.), Actas de congreso “La lengua griega en América Latina” (pp. 143-149). Buenos Aires-Patras: Universidad de Patras.

Ravanis, K. (2010). Représentations, Modèles Précurseurs, Objectifs-Obstacles et Médiation-Tutelle : concepts-clés pour la construction des connaissances du monde physique à l’âge de 5-7 ans. Revista Electrónica de Investigación en Educación en Ciencias, 5(2), 1-11.

Sanger, M. J. (2005). Evaluating students’ conceptual understanding of balanced equations and stoichiometric ratios using a particulate drawing. Journal of Chemical Education, 82(1), 131-134.

Taber, K. S. (2001). Building the structural concepts of chemistry: Some considerations from educational research. Chemistry Education: Research and Practice in Europe, 2(2), 123-158.

Taber, K. S. (2014). Ethical considerations of chemistry education research involving human subjects. Chemistry Education: Research and Practice, 15, 109-113.

Taber, K. S., &Coll, R. K. (2002). Bonding. In J. K. Gilbert, O. De Jong, R. Justi& D. F. Treagust (Dir.), Chemical education: Towards a research-based practice (pp. 213-234). The Netherlands: Kluwer Academic Publishers.

Talanquer, V. (2006). Commonsense chemistry: A model for understanding students' alternative conceptions. Journal of Chemical Education, 83(5), 811-816.

Talanquer, V. (2009). On cognitive constraints and learning progressions: The case of "structure of matter". International Journal of Science Education, 31(15), 2123-2136.

Talanquer, V. (2011). Macro, submicro, and symbolic: The many faces of the chemistry "triplets". International Journal of Science Education, 33(2), 179-195.

Taskin, V., & Bernholt, S. (2014). Students’ understanding of chemical formulae: A review of empirical research. International Journal of Science Education, 36(1), 157-185.

Treagust, D. F., Chittleborough, G., & Mamiala, T. (2003). The role of submicroscopic and symbolic representations in chemical explanations. International Journal of Science Education, 25(11), 1353-1368.

Wandersee, J. H., Mintzes, J. J., & Novak, J. D. (1994). Research on alternative conceptions in science. In D. Gabel (Dir.), Handbook of Research on Science Teaching and Learning (pp. 177-210). New York, NY: Simon & Schuster Macmillan.

Wu, H.-K. (2003). Linking the microscopic view of chemistry to real-life experiences: Intertextuality in a high-school science classroom. Science Education, 87(6), 868-891.


Refbacks

  • There are currently no refbacks.


Copyright © 2015 - 2023. European Journal of Alternative Education Studies (ISSN 2501-5915) is a registered trademark of Open Access Publishing GroupAll rights reserved.

This journal is a serial publication uniquely identified by an International Standard Serial Number (ISSN) serial number certificate issued by Romanian National Library (Biblioteca Nationala a Romaniei). All the research works are uniquely identified by a CrossRef DOI digital object identifier supplied by indexing and repository platforms.

All the research works published on this journal are meeting the Open Access Publishing requirements and can be freely accessed, shared, modified, distributed and used in educational, commercial and non-commercial purposes under a Creative Commons Attribution 4.0 International License (CC BY 4.0).