TRAVAILLER DANS L'ÉDUCATION AVEC LA COMPRÉHENSION DES CONCEPTS DES SCIENCES / WORKING IN EDUCATION WITH UNDERSTANDING THE CONCEPTS OF SCIENCE

James Rodriguez

Abstract


Cet article aborde la question des cadres théoriques plus larges pour l'enseignement des sciences physiques et naturelles. Trois approches distinctes mais complémentaires sont discutées à cet égard : des approches didactiques influencées par les courants psychologiques pour l'apprentissage, des approches orientées à l’enseignement et une troisième tendance plus traditionnelle adaptées aux objets du savoir savant.

This article addresses the issue of broader theoretical frameworks for the teaching of the physical and natural sciences. Three distinct but complementary approaches are discussed in this regard: educational approaches influenced by psychological currents for learning, teaching-oriented approaches and a third, more traditional trend adapted to the objects of scholarly knowledge.

Article visualizations:

Hit counter


Keywords


didactique des sciences, courants psychologiques pour l'apprentissage, transposition didactique, savoir savant / science education, psychological currents for learning, didactic transposition, academic knowledge

Full Text:

PDF

References


Akpa, A-O. (1994). Élaboration d’un ensemble didactique, le «Réseau électrique», pour l’acquisition du concept électrique au second cycle du secondaire. Thèse de doctorat publiée, Université du Québec à Trois-Rivières, Trois-Rivières, Québec.

Arun, Z. (2017). Formation des enseignants et recherche en didactique des sciences. European Journal of Education Studies, 3(9), 206-216.

Arun, Z. (2018). Questions sur la formation initiale des enseignants en didactique des sciences: une vision alternative. European Journal of Alternative Education Studies, 3(1), 44-53.

Boilevin, J.-M., & Ravanis, K. (2007). L’éducation scientifique et technologique à l’école obligatoire face à la désaffection: recherches en didactique, dispositifs et références. Skholê, HS(1), 5-11.

Bosch, M., & Gascon, J. (2006). Twenty five years of the didactic transposition. ICMI Bulletin, 58, 51-65.

Boumghar, S., Kendil, D., Ghedjghoudj, S., & Lounis, A. (2012). Enseignement-apprentissage du concept “force” et persistance des difficultés : Quelle influence mathématique ? Review of Science, Mathematics ans ICT Education, 6(2), 63-81.

Castro, D. (2018). Schèmes et trajectoires pour la formation des enseignants des sciences. European Journal of Education Studies, 4(3), 260-269.

Castro, D., & Rodriguez, J. (2014). 8-9 year old pupils' mental representations of light: teaching perspectives. Journal of Advances in Natural Sciences, 2(1), 40-44.

Comiti, C. (2014). Recherche en didactique et formation des enseignants. Revista do Programa de Pós-Graduação em Educação Matemática da Universidade Federal de Mato Grosso do Sul, 7, 444-456.

Convert, B. (2003). La « désaffection » pour les études scientifiques. Revue Française de Sociologie, 3(3), 449-467.

Drake, S. (1957). Discoveries and opinions of Galileo. New York: Doubleday & Company.

Dumas Carré, A. Weil-Barais, A. Ravanis, K., & Shourcheh, F. (2003). Interactions maître-élèves en cours d’activités scientifiques à l’école maternelle : approche comparative. Bulletin de Psychologie, 56(4), 493-508.

Duverney, D. (2003). Réflexions sur la désaffection pour les études scientifiques. La Gazette des Mathématiciens, 95, 83-101.

Fragkiadaki, G., & Ravanis, K. (2021). The unity between intellect, affect, and action in a child’s learning and development in science. Learning, Culture and Social Interaction, 29, 100495.

Grigorovitch, A. (2014). Children’s misconceptions and conceptual change in Physics Education: the concept of light. Journal of Advances in Natural Sciences, 1(1), 34-39.

Grigorovitch, A. (2018). Interactions didactiques et apprentissage en physique à l’école maternelle et primaire. European Journal of Education Studies, 5(4), 1-9.

Halimi, L. (1982). Découvrons et expérimentons. Paris: Nathan.

Hoang, V. (2020). 14 year old student representations related to the color: a teaching intervention. European Journal of Alternative Education Studies, 5(1), 44-53.

Kaliampos, G., Ravanis, K., & Vavougios, D. (2021). A comparison study of alternative conceptions on impetus theory and projectile motion of adolescents with typical development and high functioning autism spectrum disorder. International Journal of Science Education, 43(1), 128-156.

Kaliampos, G., Kada, V., Saregar, A., & Ravanis, K. (2020). Preschool pupils’ mental representations on electricity, simple electrical circuit and electrical appliances. European Journal of Education Studies, 7(12), 596-611.

Kamii, C. (1982). La connaissance physique et le nombre à l'école enfantine. Approche piagétienne. Pratiques et théorie, cahier n. 21. Genève : Université de Genève.

Loughran, J., Berry, A., & Mulhall, P. (2012). Understanding and developing Science teachers'Pedagogical Content Knowledge. Rotterdam: Sense Publishers.

McCloskey, M., Caramazza, A., & Green, B. (1980). Curvilinear motion in the absence of external forces: Naive beliefs about the motion of objects. Science, 210(4474), 1139-1141.

Muzio, J., Heins, T., & Mundell R. (2002). Experiences with reusable E-learning objects: From theory to practice. The Internet and Higher Education, 5(1), 21-34.

Norgy, K. (2019). Robotique pédagogique à l’école primaire: quelle activité des élèves de Classe Préparatoire (6-7 ans) et quels apprentissages dans une séquence conçue par l’enseignant ? Review of Science, Mathematics and ICT Education, 13(1), 93-110.

Park, S., & Oliver, S. J. (2008). Revisiting the conceptualization of Pedagogical Content Knowledge (PCK): PCK as a conceptual tool to understand teachers as professionals. Research in Science Education, 38, 261–284.

Périsset, D. (2010). Le double enjeu de la formation à l’expertise professionnelle. Recherche et Formation, 65, 61-74.

Piaget, J., & R. Garcia (éds). (1971). Les explications causales. Paris: PUF.

Ravanis, K. (1996). Stratégies d’interventions didactiques pour l’initiation des enfants de l’école maternelle en sciences physiques. Revue de Recherches en Éducation: Spirale, 17, 161-176.

Ravanis, K. (1998). Procédures didactiques de déstabilisation des représentations spontanées des élèves de 5 et 10 ans. Le cas de la formation des ombres. In A. Dumas Carré & A. Weil-Barais (Éds), Tutelle et médiation dans l´éducation scientifique (pp. 105-121). Berne: P. Lang.

Ravanis, K. (2017). Early Childhood Science Education: state of the art and perspectives. Journal of Baltic Science Education, 16(3), 284-288.

Ravanis, K. (2021). The Physical Sciences in Early Childhood Education: theoretical frameworks, strategies and activities. Journal of Physics: Conference Series, 1796, 012092.

Ravanis, K., Zacharos, K., & Vellopoulou, A. (2010). The formation of shadows: the case of the position of a light source in relevance to the shadow. Acta Didactica Napocensia, 3(3), 1-6.

Rodriguez, J. (2018). Des représentations aux premiers modèles: le monde physique dans la pensée des petits enfants. European Journal of Education Studies, 5(2), 1-9.

Rodriguez, J., & Castro, D. (2016). Changing 8-9 year-old pupil’s mental representations of light: a metaphor based teaching approach. Asian Education Studies, 1(1), 40-46.

Sotirova, E.-M. (2017). L’apprentissage en sciences expérimentales : la recherche et l’enseignement. European Journal of Education Studies, 3(12), 188-198.

Stachel, J. (2002). Einstein from "B" to "Z". Boston: Birkhäuser.

Tin, P. S. (2019). Un cadre méthodologique pour la démarche d’investigation : l’exemple du changement d’état de l’eau à l’âge de 8 ans. European Journal of Education Studies, 6(4), 1-12.

Vellopoulou, A., & Ravanis, K. (2012). From the formal curriculum to the lesson planning: the didactic transposition kindergarten teachers’ carry out as they plan to teach dissolution. Skholê, 17, 71-76.

Vygotsky, L. S. (1934/2003). Learning and intellectual development at school age. In Psychology and pedagogy: Psychological foundations of learning and development, pp. 93-94. São Paulo: Centauro.

Yashwantrao, R., Bholoa, A., Watts, M., Nadal, P. S. (2018). Teaching and learning physics using technology: Making a case for the affective domain. Education Inquiry, 9(2), 210-236.




DOI: http://dx.doi.org/10.46827/ejes.v8i5.3705

Refbacks

  • There are currently no refbacks.


Copyright (c) 2021 James Rodriguez

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright © 2015-2023. European Journal of Education Studies (ISSN 2501 - 1111) is a registered trademark of Open Access Publishing Group. All rights reserved.


This journal is a serial publication uniquely identified by an International Standard Serial Number (ISSN) serial number certificate issued by Romanian National Library (Biblioteca Nationala a Romaniei). All the research works are uniquely identified by a CrossRef DOI digital object identifier supplied by indexing and repository platforms. All authors who send their manuscripts to this journal and whose articles are published on this journal retain full copyright of their articles. All the research works published on this journal are meeting the Open Access Publishing requirements and can be freely accessed, shared, modified, distributed and used in educational, commercial and non-commercial purposes under a Creative Commons Attribution 4.0 International License (CC BY 4.0).