DIFFICULTÉS LIÉES À L'ENSEIGNEMENT DES SCIENCES PHYSIQUES EN LABORATOIRE : POINTS DE VUE DES ENSEIGNANTS / DIFFICULTIES OF LABORATORY PHYSICAL SCIENCES TEACHING: TEACHERS' PERSPECTIVES

Zebun Arun

Abstract


Cet article présente les résultats d'une recherche sur les difficultés rencontrées par les enseignants dans l'enseignement des sciences physiques au laboratoire. Sur la base d'une enquête préalable, trois niveaux de difficultés ont été sélectionnés, qui sont liés à trois facteurs du processus éducatif : l'élève, l'enseignant et le programme scolaire. À l'aide d'un questionnaire spécifique, les points de vue de 232 professeurs de sciences physiques de l'enseignement secondaire ont été étudiés et les résultats ont révélé l'importance de certaines difficultés dans l'enseignement des sciences en laboratoire scolaire.

This article presents the results of research on the difficulties teachers face in teaching physical science in the laboratory. Based on a pre-survey conducted, three levels of difficulties were selected that are related to three factors of the educational process: the student, the teacher and the school program. Using a specific questionnaire, the views of 232 secondary school physical science teachers were studied and the results revealed the importance of certain difficulties in teaching science in the school laboratory.

 

Article visualizations:

Hit counter


Keywords


enseignement des sciences physiques, enseignant, laboratoire scolaire / physical science education, teacher, school laboratory

Full Text:

PDF

References


Alderman, M. K. (2008). Motivation for achievement: Possibilities for teaching and learning. New York: Routledge.

Arun, Z. (2017). Formation des enseignants et recherche en didactique des sciences. European Journal of Education Studies, 3(9), 206-216.

Arun, Z. (2018). Questions sur la formation initiale des enseignants en didactique des sciences : Une vision alternative. European Journal of Alternative Education Studies, 3(1), 44-53.

Arun, Z. (2019). Le passage des sciences physiques et naturelles à leur didactique : réflexions sur un cadre pour la formation des enseignants. European Journal of Education Studies, 6(2), 50-60.

Castro, D. (2018). L’apprentissage de la propagation rectiligne de la lumière par les élèves de 10-11 ans. La comparaison de deux modèles d’enseignement. European Journal of Education Studies, 4(5), 1-10.

Franse. R. (2008). Science is Primary. Onderzoeken en ontwerpen in groep 1 en 2. Nationaal Centrum voor Wetenschap en Technologie: Hands-on, Brains-on. Te verkrijgen via R. F ranse, science center NEMO.

Fratiwi, N. J., Samsudin, A., Ramalis, T. R., Saregar, A., Diani, R., Irwandani, I., Rasmitadila, R., & Ravanis, K. (2020). Developing MeMoRI on Newton’s Laws: for identifying students’ mental models. European Journal of Educational Research, 9(2), 699-708.

Grigorovitch, A. (2014). Children’s misconceptions and conceptual change in Physics Education: the concept of light. Journal of Advances in Natural Sciences, 1(1), 34-39.

Grigorovitch, A. (2015). La formation des ombres : représentations mentales des élevés de 7-9 ans. Educational Journal of the University of Patras UNESCO Chair, 2(2), 102-109.

Hamurcu, H. (1998). Security in Science course. Hacettepe University Journal of Education, 14, 29-32.

Harman, G., Cokelez, A., Dal, B., & Alper, U. (2016). Pre-service science teachers’ views on laboratory applications in science education: the effect of a two-semester course. Universal Journal of Educational Research, 4(1), 12-25.

Hodson, D. (1990). A critical look at practical work in school science. School Science Review, 70(256), 33-40.

Hoang, V. (2019). L’enseignement de la physique à partir des représentations : un projet collaboratif. European Journal of Education Studies, 6(9), 306-315.

Hoang, V. (2022). Recherche et développement d'activités scientifiques pour la petite enfance. European Journal of Alternative Education Studies, 7(1), 114-123.

International Council for Science [ICSU] (2011). Report of the ICSU, Ad-hoc Review Panel on Science Education. Paris: International Council for Science, Paris. Retrieved from http://www.icsu.org/publications/report.pdf

Kirkham, W. J. (1983). The training of teachers for practical work in science. In N. K. Lowe (Ed.), New trends in school science equipment (pp. 113-122). Paris, France: UNESCO.

Kokologiannaki, V., & Ravanis, K. (2013). Greek sixth graders mental representations of the mechanism of vision. New Educational Review, 33(3), 167-184.

Kwok, P. W. (2015). Science laboratory learning environments in junior secondary schools. Asia-Pacific Forum on Science Learning and Teaching, 16(1), 1-28.

Lewin, K. M. (2004). The pre-service training of teachers – Does it meet its objectives and how can it be improved? Background Paper for EFA Global Monitoring Report.

Mabejane, M. R. (2016). Physical Sciences student teachers training: theoretical and practical aspects. Educational Journal of the University of Patras UNESCO Chair, 3(1), 123-134.

Mabejane, M. R., & Ravanis, K. (2018). Linking teacher coursework training, pedagogies, methodologies and practice in schools for the undergraduate science education student teachers at the National University of Lesotho. European Journal of Alternative Education Studies, 3(2), 67-87.

Maskur, R., Latifah, S., Pricilia, A., Walid, A., & Ravanis, K. (2019). The 7E learning cycle approach to understand thermal phenomena. Jurnal Pendidikan IPA Indonesia, 8(4), 464-474.

OECD (1999). School Science Laboratories: Today's Trends and Guidelines. PEB Exchange, Programme on Educational Building, No. 1999/03, OECD Publishing, Paris, https://doi.org/10.1787/467124308827.

Ouarzeddine, A., Gomatos, L., & Ravanis, K. (2020). Étude comparative des systèmes de formation initiale et continue des enseignants en Algérie et en Grèce. European Journal of Education Studies, 6(10), 67-85.

Petrovici, C. (2008). Résultats d’une enquête sur les compétences et les rôles essentiels des instituteurs. Review of Science, Mathematics and ICT Education, 2(1/2), 97-109.

Pugh, K. J., Linnenbrink-Garcia, L., Koskey, K., Stewart, V., & Manzey, C. (2010). Motivation, learning and transformative experience: A study of deep engagement in science. Science Education, 94, 1-28.

Ravanis, K. (2017). Early Childhood Science Education: state of the art and perspectives. Journal of Baltic Science Education, 16(3), 284-288.

Ravanis, K. (2020). Precursor models of the Physical Sciences in Early Childhood Education students’ thinking. Science Education Research and Praxis, 76, 24-31.

Ravanis, K. (2021). The Physical Sciences in Early Childhood Education: theoretical frameworks, strategies and activities. Journal of Physics: Conference Series, 1796, 012092.

Ravanis, K. (2022). Research trends and development perspectives in Early Childhood Science Education: an overview. Education Sciences, 12(7), 456.

Rodriguez, J. (2023). Les caractéristiques générales de la transformation dans la pensée des élèves : un exemple de l'optique géométrique élémentaire. European Journal of Education Studies, 10(2), 80-91.

Saregar, A., Mulyani, H., Yetri, Y., Anugrah, A., & Ravanis, K. (2020). An analysis of epistemological learning barriers on Newton’s law material in engineering class. Journal of Innovation in Educational and Cultural Research, 1(2), 77-86.

Sotirova, E.-M. (2017). L’apprentissage en sciences expérimentales : la recherche et l’enseignement. European Journal of Education Studies, 3(12), 188-198.

Sotirova, E.-M. (2020). Réflexions sur les objectifs de l’éducation scientifique. European Journal of Education Studies, 7(2), 172-180.

Sigauke, A., Mabejane, M., Shao, J., & Varghese, T. (1993). Exploring low cost materials: Low-cost practical science examinations for developing countries. In W. Patrick, G. Brian, H. Richard, M. Laurence (Eds.), The Harare Generator: Innovative Ideas and Techniques for Science Educators in Africa (pp. 154-163). Harare, Zimbabwe: International Council of Scientific Unions.

Timpili, D., Kaliampos, G., & Ravanis, K. (2023). Representations of children 5-6 years old about electric current: a qualitative approach. Journal of Educational Technology and Instruction, 2(1), 1-14.

Tin, P. S. (2018). Élaboration expérimentale des représentions mentales des élèves de 16 ans sur les concepts thermiques. European Journal of Education Studies, 4(7), 141-150.

Tin, P. S. (2022). Représentations mentales et obstacles dans la pensée des enfants de 6 et 11 ans sur la fusion de la glace. European Journal of Education Studies, 9(3), 130-139.

Warren, K. (1983). The use of local resources for practical work in science education. In N. K. Lowe (Ed.), New trends in school science equipment (pp. 29-34). Paris, France: UNESCO.

Wellington, J. (1998). Practical Work in Science: Time for a re-appraisal. Practical Work in School. In J. Wellington (Ed.), Practical work in school: which way we now?

(pp. 3-15). London and New York: Routledge.




DOI: http://dx.doi.org/10.46827/ejes.v10i7.4852

Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 Zebun Arun

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright © 2015-2023. European Journal of Education Studies (ISSN 2501 - 1111) is a registered trademark of Open Access Publishing Group. All rights reserved.


This journal is a serial publication uniquely identified by an International Standard Serial Number (ISSN) serial number certificate issued by Romanian National Library (Biblioteca Nationala a Romaniei). All the research works are uniquely identified by a CrossRef DOI digital object identifier supplied by indexing and repository platforms. All authors who send their manuscripts to this journal and whose articles are published on this journal retain full copyright of their articles. All the research works published on this journal are meeting the Open Access Publishing requirements and can be freely accessed, shared, modified, distributed and used in educational, commercial and non-commercial purposes under a Creative Commons Attribution 4.0 International License (CC BY 4.0).