QUESTIONS CRITIQUES DANS L'APPRENTISSAGE ET L'ENSEIGNEMENT DES SCIENCES PHYSIQUES ET NATURELLES / CRITICAL ISSUES IN LEARNING AND TEACHING THE NATURAL SCIENCES
Abstract
Cet article présente et discute certaines questions clés sur l'apprentissage et l'enseignement des sciences dans une perspective de didactique des sciences moderne. Cette approche tente de distinguer l'enseignement scientifique contemporain des efforts traditionnels et souligne l'accent mis sur le niveau de la recherche éducative qui est principalement orientée vers l'approfondissement de nos connaissances sur les questions liées à la nature de l'apprentissage et de l'enseignement, l'apprentissage lié au développement de l'enfant. La discussion a également porté sur l'importance d'étudier le passage d'une connaissance empirique et intuitive à une connaissance compatible avec la connaissance scientifique basée sur la contribution de diverses connaissances tirées de l'épistémologie et de la psychologie qui sont opérationnelles dans la didactique contemporaine.
The present learners' dissatisfaction with their assessment scores in terms of their use, inferences, and educational improvements has urged many facilitators and examiners to train and prepare examinees to complete their assessments. The demand to raise assessment scores has resulted in conditions and practices that pollute and contaminate the reliability and validity of assessment scores. This study, therefore, seeks to examine the factors perceived as contributors to assessment score pollution. The study employed a descriptive survey to gather data and analyzed using means and standard deviations. A sample size of 248 teachers who had access to an Android device and internet connectivity were purposefully selected for this study. The results confirmed that factors related to assessment preparation, assessment administration, and external factors (parents and community) were the primary causes of assessment score pollution in the district. The researchers recommended that the District Education Service directorates should organize in-service training for teachers on testing procedures. Parents and the community should also be educated on the consequences of test pollution through parents’ association meetings and seminars by the district education office.
Article visualizations:
Keywords
Full Text:
PDFReferences
Appleton, K. (2005). Science pedagogical content knowledge and elementary school teachers. In K. Appleton (Ed.), Elementary science teacher education (pp. 31-54). Abingdon: Routledge. https://doi.org/10.4324/9781315045443
Arun, Z. (2017). Formation des enseignants et recherche en didactique des sciences. European Journal of Education Studies, 8(9), 206-216. http://dx.doi.org/10.46827/ejes.v8i9.3883
Arun, Z. (2018). Questions sur la formation initiale des enseignants en didactique des sciences : une vision alternative. European Journal of Alternative Education Studies, 3(1), 44-53. https://doi.org/10.5281/zenodo.1185434
Arun, Z. (2019). Le passage des sciences physiques et naturelles à leur didactique : réflexions sur un cadre pour la formation des enseignants. European Journal of Education Studies, 6(2), 50-60. https://doi.org/10.5281/zenodo.2669525
Bachelard, G. (1980). La formation de l'esprit scientifique. Paris: Vrin.
Bryce, T. G. K., & Blown, E. J. (2013). Children's concepts of the shape and size of the Earth, Sun and Moon. International Journal of Science Education, 35(3), 388-446. http://dx.doi.org/10.1080/09500693.2012.750432
Castro, D. (2013). Light mental representations of 11–12-year-old students. Journal of Social Science Research, 2(1), 35-39. http://dx.doi.org/10.24297/jssr.v1i1.3055
Castro, D. (2020). The scientific experience as teaching reality. European Journal of Alternative Education Studies, 5(2), 49-59.
Chevallard, Y. (1985). La transposition didactique. Grenoble: La Pensée Sauvage. Retrieved from https://www.persee.fr/doc/rfp_0556-7807_1986_num_76_1_2401_t1_0089_0000_1
Conne, F. (1992). Savoir et connaissance dans la perspective de la transposition didactique. Recherches en Didactique des Mathématiques, 12(2-3), 221-270. Retrieved from https://hal.science/halshs-01523900/
Fragkiadaki, G., & Ravanis, K. (2016). Genetic research methodology meets Early Childhood Science Education Research: a Cultural-Historical study of child’s scientific thinking development. Cultural-Historical Psychology, 12(3), 310-330. https://doi.org/10.17759/chp.2016120319.
Gebru, M. H. (2021). Visualization and simulation for effective teaching of basic thermal concepts for grade nine. Mediterranean Journal of Education, 1(1), 138-153. https://doi.org/10.26220/mje.3610
Goffard, M., & Weil-Barais, A. (2005) Enseigner et apprendre les sciences. Paris: Armand Colin. Retrieved from https://journals.openedition.org/rfp/298
Grigorovitch, A. (2014). Children’s misconceptions and conceptual change in Physics Education: the concept of light. Journal of Advances in Natural Sciences, 1(1), 34-39. http://dx.doi.org/10.24297/jns.v1i1.5037
Grigorovitch, A. (2016). L’approche des manuels scolaires: comprendre, créer, utiliser, discuter, évaluer. Educational Journal of the University of Patras UNESCO Chair, 3(1), 67-73.
Grigorovitch, A. (2018). Interactions didactiques et apprentissage en physique à l’école maternelle et primaire. European Journal of Education Studies, 5(4), 1-9. https://doi.org/10.5281/zenodo.1453457
Grigorovitch, A., & Nertivich, D. (2017). Introduction to magnets for lower primary school students. European Journal of Education Studies, 3(3), 144-154. https://doi.org/10.5281/zenodo.290135
Impedovo, M. A., Delserieys-Pedregosa, A., Jégou, C. & Ravanis, K. (2017). Shadow formation at preschool from a socio-materiality perspective. Research in Science Education, 47(3), 579-601. http://dx.doi.org/10.1007/s11165-016-9518-x
Johsua, S., & Dupin, J.-J. (1993). Introduction à la didactique des sciences et des mathématiques. Paris: PUF. Retrieved from https://www.persee.fr/doc/rfp_0556-7807_1994_num_109_1_2533_t1_0155_0000_2
Kaliampos, G., & Ravanis, K. (2019). Thermal conduction in metals: mental representations in 5-6 years old children’s thinking. Jurnal Ilmiah Pendidikan Fisika ‘Al-BiRuNi’, 8(1), 1-9. https://doi.org/10.24042/jipfalbiruni.v8i1.3737
Kaliampos, G., Ioannou, M., Pantidos, P., & Ravanis, K. (2024). The transformation of children’s mental representations of 5-6 year olds for coagulation: precursor models through a storytelling approach. Journal of Physics: Conference Series, 2871, 012010. https://iopscience.iop.org/article/10.1088/1742-6596/2871/1/012010
Kampeza, M., & Ravanis, K. (2012). Children’s understanding of the earth’s shape: an instructional approach in early education. Skholê, 17, 115-120. Retrieved from https://www.researchgate.net/publication/236256493_Kampeza_M_Ravanis_K_2012_Children's_understanding_of_the_earth's_shape_an_instructional_approach_in_early_education_Skhole_17_115-120
Kοtuláková, Κ. (2013). Teachers’ focus on pupil’s prior conceptions in Inquiry-Based Teaching. Review of Science, Mathematics and ICT Education, 7(2), 53-71. https://doi.org/10.26220/rev.2045
Küçüközer, H. (2007). Prospective science teachers’ conceptions about astronomical subjects. Science Education International, 18(1), 113-130. Retrieved from https://files.eric.ed.gov/fulltext/EJ1065856.pdf
Laval, A. (1985). Chaleur, température, changements d’état. Aster, 1, 115-132. Retrieved from https://www.persee.fr/doc/aster_0297-9373_1985_num_1_1_893
Leite, L. (1999). Heat and temperature: An analysis of how these concepts are dealt with in textbooks. European Journal of Teacher Education, 22(1), 75-88. Retrieved from https://doi.org/10.1080/0261976990220106
Magnusson, S., Krajcik, J., & Borko, H. (1999). Nature, sources and development of pedagogical content knowledge for science teaching. In J. Gess-Newsome & N. G. Lederman (Eds), Examining pedagogical content knowledge: the construct and its implications for science education (pp. 95-132). Dordrecht, The Netherlands: Kluwer Academic.
Martinand, J.-L. (1986). Connaître et transformer la matière. Berne: Peter Lang. Retrieved from https://www.persee.fr/doc/rfp_0556-7807_1987_num_81_1_2434_t1_0113_0000_1
Metz, K. (2009). Rethinking what is "developmentally appropriate" from a learning progression perspective: Τhe power and the challenge. Review of Science, Mathematics and ICT Education, 3(1), 5-22. https://doi.org/10.5281/zenodo.1117928
Nertivich, D. (2016). Représentations des élèves de 11-12 ans pour la formation des ombres et changement conceptuel. International Journal of Progressive Sciences and Technologies, 3(2), 103-107. https://ijpsat.org/index.php/ijpsat/article/view/54
Nertivich, D. (2018). Concepts thermiques de base chez les élèves de 17 ans. European Journal of Education Studies, 4(2), 145-154. https://doi.org/10.5281/zenodo.1173163
Park, S., & Oliver, S. J. (2008). Revisiting the conceptualization of Pedagogical Content Knowledge (PCK): PCK as a conceptual tool to understand teachers as professionals. Research in Science Education, 38, 261–284. Retrieved from https://link.springer.com/article/10.1007/s11165-007-9049-6
Piaget, J. (1973). Τhe child's conception of the world. St. Albans Herts: Paladin. Retrieved from https://books.google.ro/books/about/The_Child_s_Conception_of_the_World.html?id=RWZIOL0NDLwC&redir_esc=y
Ravanis, K. (1998). Procédures didactiques de déstabilisation des représentations spontanées des élèves de 5 et 10 ans. Le cas de la formation des ombres. In A. Dumas Carré & A. Weil-Barais (Éds), Tutelle et médiation dans l´éducation scientifique (pp. 105-121). Berne: P. Lang.
Ravanis, K. (2013). Mental representations and obstacles in 10–11-year-old children’s thought concerning the melting and coagulation of solid substances in everyday life. Preschool and Primary Education, 1(1), 130-137. http://dx.doi.org/10.12681/ppej.38
Ravanis, K. (2020). Precursor models of the Physical Sciences in Early Childhood Education students’ thinking. Science Education Research and Praxis, 76, 24-31. Retrieved from https://www.researchgate.net/profile/Konstantinos-Ravanis/publication/345693326_Ravanis_K_2020_Precursor_models_of_the_Physical_Sciences_in_Early_Childhood_Education_students'_thinking_Science_Education_Research_and_Praxis_76_24-31/links/5faaeb01a6fdcc331b938edd/Ravanis-K-2020-Precursor-models-of-the-Physical-Sciences-in-Early-Childhood-Education-students-thinking-Science-Education-Research-and-Praxis-76-24-31.pdf
Ravanis, K. (2021). The Physical Sciences in Early Childhood Education: theoretical frameworks, strategies and activities. Journal of Physics: Conference Series, 1796, 012092. https://doi.org/10.1088/1742-6596/1796/1/012092
Ravanis, K., Kaliampos, G., & Pantidos, P. (2021). Preschool children science mental representations: the sound in space. Education Sciences, 11(5), 242. https://psycnet.apa.org/doi/10.3390/educsci11050242
Ravanis, K. Charalampopoulou, C. Boilevin, J.-M., & Bagakis, G. (2005). La construction de la formation des ombres chez la pensée des enfants de 5-6 ans : procédures didactiques sociocognitives. Revue de Recherches en Éducation : Spirale, 36, 87-98. https://www.persee.fr/doc/spira_0994-3722_2005_num_36_1_1327.
Robson, S. (2012). Developing thinking and understanding in young children: Αn introduction for students. London: Routledge. Retrieved from https://www.routledge.com/Developing-Thinking-and-Understanding-in-Young-Children-An-Introduction-for-Students/Robson/p/book/9781138599796
Rodriguez, J., & Castro, D. (2014). Children's ideas of changes in the state of matter: solid and liquid salt. Journal of Advances in Humanities, 1(1), 1-6. http://dx.doi.org/10.24297/jah.v1i1.5151
Rodriguez, J., & Castro, D. (2016). Changing 8-9 year-old pupil’s mental representations of light: a metaphor based teaching approach. Asian Education Studies, 1(1), 40-46. http://dx.doi.org/10.20849/aes.v1i1.30
Rodriguez, J., & Castro, D. (2020). Quality improvement in teaching and learning science in primary school settings: using a metaphor to approach the concept of light. Jurnal Ilmiah Pendidikan Fisika Al-BiRuNi, 9(2), 185-194. Retrieved from https://ejournal.radenintan.ac.id/index.php/al-biruni/article/view/6141/pdf
Rozenszaijn, R., & Yarden, A. (2014). Expansion of biology teachers’ Pedagogical Content Knowledge (PCK) during a long-term professional development program. Research in Science Education, 44, 189–213. Retrieved from https://link.springer.com/article/10.1007/s11165-013-9378-6
Shulman, L. S. (1987). Knowledge and teaching: Foundations of the new reform. Harvard Educational Review, 57, 1-22. Retrieved from https://people.ucsc.edu/~ktellez/shulman.pdf
Sotirova, E.-M. (2017). L’apprentissage en sciences expérimentales : la recherche et l’enseignement. European Journal of Education Studies, 3(12), 188-198. https://doi.org/10.5281/zenodo.1117928
Sotirova, E.-M. (2020). Réflexions sur les objectifs de l’éducation scientifique. European Journal of Education Studies, 7(2), 172-180. https://doi.org/10.5281/zenodo.3726312
Sotirova, E.-M. (2024). Représentations mentales, obstacles et enseignement des sciences physiques. European Journal of Education Studies, 11(3), 154-165. http://dx.doi.org/10.46827/ejes.v11i3.5244
Tin, P. S. (2018). Élaboration expérimentale des représentions mentales des élèves de 16 ans sur les concepts thermiques. European Journal of Education Studies, 4(7), 141-150. https://doi.org/10.5281/zenodo.1252546
Tin, P. S. (2019). Un cadre méthodologique pour la démarche d’investigation : l’exemple du changement d’état de l’eau à l’âge de 8 ans. European Journal of Education Studies, 6(4), 1-12. http://dx.doi.org/10.5281/zenodo.3255125
Tin, P. S. (2022). Représentations mentales et obstacles dans la pensée des enfants de 6 et 11 ans sur la fusion de la glace. European Journal of Education Studies, 9(3), 130-139. http://dx.doi.org/10.46827/ejes.v9i3.4209
Voutsinos, C. (2023). Apprentissage et enseignement en Sciences Physiques. European Journal of Alternative Education Studies, 8(1), 196-205. http://dx.doi.org/10.46827/ejae.v8i1.4721
Vygotsky, L. S. (1962). Thought and Language. Cambridge Ma: MIT Press. Retrieved from https://psycnet.apa.org/record/2006-10268-000
Wallon, H. (1968). L’évolution psychologique de l’enfant. Paris: A. Colin.
Zimmermann-Asta, M. L. (1990). Concept de chaleur : Contribution à l'étude des conceptions d'élèves et de leurs utilisations dans un processus d'apprentissage. Thèse de doctorat, Genève : FPSE-Université de Genève. https://doi.org/10.5281/zenodo.1173163
Zulkipli, F., & Surat, Α. (2022). Les idées des élèves du secondaire sur les concepts thermiques. Mediterranean Journal of Education, 2(2), 75-82. https://pasithee.library.upatras.gr/mje/article/view/4463/4368
DOI: http://dx.doi.org/10.46827/ejes.v12i1.5781
Refbacks
- There are currently no refbacks.
Copyright (c) 2025 James Rodriguez
![Creative Commons License](http://i.creativecommons.org/l/by/4.0/88x31.png)
This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright © 2015-2026. European Journal of Education Studies (ISSN 2501 - 1111) is a registered trademark of Open Access Publishing Group. All rights reserved.
This journal is a serial publication uniquely identified by an International Standard Serial Number (ISSN) serial number certificate issued by Romanian National Library (Biblioteca Nationala a Romaniei). All the research works are uniquely identified by a CrossRef DOI digital object identifier supplied by indexing and repository platforms. All authors who send their manuscripts to this journal and whose articles are published on this journal retain full copyright of their articles. All the research works published on this journal are meeting the Open Access Publishing requirements and can be freely accessed, shared, modified, distributed and used in educational, commercial and non-commercial purposes under a Creative Commons Attribution 4.0 International License (CC BY 4.0).