MATHEMATICAL PRACTICES IN A LEARNING ENVIRONMENT DESIGNED BY REALISTIC MATHEMATICS EDUCATION: TEACHING EXPERIMENT ABOUT CONE AND PYRAMID

Burçin Gökkurt Özdemir

Abstract


The purpose of the study is to identify the classroom mathematical practices developed within a learning environment designed by Realistic Mathematics Education for teaching cone and pyramid to preservice teachers. A teaching experiment including five-week instructional sequence by a hypothetical learning trajectory about the solids of cone and pyramid was conducted to five preservice middle school mathematics teachers. Their learning was examined in this teaching experiment performed based on case study as a qualitative research design. The social learning environment in the classroom was investigated by three-phase methodology of Rasmussen and Stephan (2008) developed based on Toulmin’s model of argumentation. According to the findings, four mathematical practices emerged in the current study. 

 

Article visualizations:

Hit counter

DOI

Keywords


cone, mathematical practices, pyramid, realistic mathematics education

Full Text:

PDF Academia.edu E R I C

References


Alkış-Küçükaydın, M. & Gökbulut, Y. (2013). Sınıf öğretmeni adaylarının geometrik cisimlerin tanımlanması ve açılımına ilişkin kavram yanılgıları. Cumhuriyet International Journal of Education, 2(1), 102-117.

Altaylı, D., Konyalıoğlu, A. C., Hızarcı, S., & Kaplan, A. (2014).İlköğretim matematik öğretmen adaylarının üç boyutlu cisimlere ilişkin pedagojik alan bilgilerinin incelenmesi. Middle Eastern ve African Journal of Educational Research, 10, 4-24.

Ball, D. L. & Bass, H. (2000). Interweaving content and pedagogy in teaching and learning to teach: Knowing and using mathematics. In J. Boaler (Ed.) Multiple perspectives on the teaching and learning of mathematics, (pp. 83-104), Westport, CT: Ablex.

Baykul, Y. (2014). Ortaokulda matematik öğretimi (5-8 sınıflar) (2. Baskı). Ankara: Pegem Yayıncılık.

Bozkurt, A. & Koç, Y. (2012). Investigating first year elementary mathematics teacher education students’ knowledge of prism. Educational Sciences: Theory & Practice, 12(4), 2949-2952.

Creswell, J. W. (2009). Research design: Qualitative, quantitative, and mixed methods approaches (3rd ed.). Thousand Oaks, CA: SAGE Publications.

Cobb, P. & Bauersfeld, H. (1995). Introduction: The coordination of psychological and sociological perspectives in mathematics education. In P. Cobb & H. Bauersfeld (Eds.), The emergence of mathematical meaning: Interaction in classroom cultures (pp. 1–16). Hillsdale, NJ: Erlbaum.

Cobb, P., Gravemeijer, K., Yackel, E., McClain, K., & Whitenack, J. (1997). Mathematizing and symbolizing: The emergence of chains of signification in one first-grade classroom. In D. Kirshner & J. A. Whitson (Eds.), Situated cognition: Social, semiotic, and psychological perspectives (pp. 151–233). Mahwah, NJ: Erlbaum.

Cobb, P., Stephan, M., McClain, K., & Gravemeijer, K. (2001). Participating in mathematical practices. Journal of the Learning Sciences, 10(1&2), 113-163.

Cobb, P. & Yackel, E. (1996). Constructivist, emergent, and sociocultural perspectives in the context of developmental research. Educational Psychologist, 31(3/4), 175-190.

de Villiers, M., Govender, R., & Patterson, N. (2009). Defining in geometry. In T.V. Craine & R. Rubenstein (Eds.), Understanding geometry for a changing world, Seventy-first Yearbook, (pp. 189-203). Reston, Virginia: The National Council of Teachers in Mathematics.

Freudenthal, H. (1968) Why to teach mathematics as to be useful? Educational Studies in Mathematics, 1(1), 3-8.

Freudenthal, H. (1973). Mathematics as an educational task. Dordrecht, the Netherlands: D. Reidel Publishing Company.

Fosnot, C. T. & Dolk, M. (2005), ‘Mathematics’ or ‘mathemetizing’? In C. T. Fosnot (Ed.), Constructivism: Theory, perspectives, and practice (2nd edition) (pp. 175-191). New York, NY: Teachers College, Columbia University.

Glaser, B. G. & Strauss, A. L. (1967). The discovery of grounded theory: Strategies for qualitative research. New York: Aldine de Gruyter.

Gökkurt, B. (2014). Ortaokul matematik öğretmenlerinin geometrik cisimler konusuna ilişkin pedagojik alan bilgilerinin incelenmesi. (Yayımlanmamış doktora tezi). Erzurum: Atatürk Üniversitesi Eğitim Bilimleri Enstitüsü.

Gökkurt, B. & Soylu, Y. (2016). Ortaokul matematik öğretmenlerinin pedagojik alan bilgilerinin bazı bileşenler açısından incelenmesi: koni örneği. İlköğretim Online, 15(3), 946-973.

Gökkurt, B., Şahin, Ö., Erdem, E., Başıbüyük, K., & Soylu, Y. (2015). Investigation of pedagogical content knowledge of middle school prospective mathematics teachers on the cone topic in terms of some components. Journal of Cognitive and Education Research 1(1), 18-40.

Gravemeijer, K.P.E. (1994). Developing realistic mathematics education, CD-ß Press / Freudenthal Institute, Utrecht, The Netherlands.

Gravemeijer, K. P. E. (1998). Developmental research as a research method. In J. Kilpatrick & A. Sierpinska (Eds.), Mathematics education as a research domain: A search for identity, Vol. 2, (pp. 277-295). Dordrecht: Kluwer Academic Publishers.

Gravemeijer, K., Bowers, J., & Stephan, M. (2003). A hypothetical learning trajectory on measurement and flexible arithmetic. In M. Stephan, J. Bowers & P. Cobb (Eds.), Supporting students’ development of measuring conceptions: Analyzing students’ learning in social context. (pp. 51-66). Reston, VA: National Council of Teachers of Mathematics.

Gürbüz, K. & Durmuş, S. (2009). İlköğretim matematik öğretmenlerinin dönüşüm geometrisi, geometrik cisimler, örüntü ve süslemeler alt öğrenme alanlarındaki yeterlikleri. Abant İzzet Baysal Üniversitesi Dergisi, 9(1), 1-22.

Hızarcı, S. (2004). Sunuş. S. Hızarcı, A. Kaplan, A. S. İpek, & C. Işık (Edt.), Euclid geometri ve özel öğretimi. Ankara: Öğreti Yayınları.

Koç, Y. & Bozkurt, A. (2011). Evaluating pre-service math¬ematics teachers’ comprehension level of geometric concepts. In B. Ubuz, (Ed.), The Proceedings of the 35th annual meeting of the international group for the psychology of mathematics educa¬tion (pp. 335). Ankara, Turkey.

Leiken, R. & Zazkis, R. (2010). On the content-dependence of prospective teachers’ knowledge: A case of exemplifying definitions. International Journal of Mathematical Education in Science and Technology, 41(4), 451–466.

Linchevsky, L., Vinner, S., & Karsenty, R. (1992). To be or not to be minimal? Student teachers' views about definitions in geometry. In W. Geeslin and K. Graham (Eds.), Proceedings of the 16th Annual Conference of the International Group for the Psychology of Mathematics Education (Vol 2, pp. 48-55). Durham, NH: PME.

Middle School Mathematics Curriculum [MONE] (2009). İlköğretim matematik dersi 6-8 sınıflar öğretim programı ve kılavuzu. Ankara: Talim ve Terbiye Kurulu Başkanlığı.

National Council of Teachers of Mathematics [NCTM], (2000). Principles and standarts for school mathematics, http://standards.nctm.org adresinden 10.11.2015 te indirilmiştir.

Özyürek, M (1984). Kavram öğrenme ve öğretme. Ankara Üniversitesi Eğitim Bilimleri Dergisi, 16(2), 347-366.

Rasmussen, C. & Stephan, M. (2008). A methodology for documenting collective activity. In A. E. Kelly, R. A. Lesh, & J. Y. Baek (Eds.), Handbook of design research methods in education (pp. 195-216). New York: Routledge.

Tahan, G. Ş. (2013). İlköğretim matematik 8 ders kitabı. Ankara: Can Matematik Yayınları

Tsamir, P., Tirosh, D., Levenson, E., Barkai, R., & Tabach, M. (2014). Early‑years teachers’ concept images and concept definitions: triangles, circles, and cylinders. ZDM- Mathematics Education, DOI 10.1007/s11858-014-0641-8.

Toulmin, S. E. (1969). The uses of argument. Cambridge: Cambridge University Press.

Senemoğlu, N. (1997). Gelişim öğrenme ve öğretim kuramdan uygulamaya. Ankara: Spot Matbaacılık.

Steffe, L.P. & Thompson, P. W. (2000). Teaching experiment methodology: Underlying principles and essential elements. In R. Lesh & A. E. Kelly (Eds.), Research design in mathematics and science education (pp. 267- 307). Hillsdale, NJ: Erlbaum.

Stephan, M., Bowers, J., & Cobb, P. (2003). Supporting students' development of measuring conceptions: Analyzing students' learning in social context. Reston, VA: National Council of Teachers of Mathematics.

Streefland, L. (1991). Fractions in realistic mathematics education. A paradigm of developmental research. Dordrecht: Kluwer Academic Publisher.

Ubuz, B. (1999). 10. ve 11. sınıf öğrencilerinin temel geometri konularındaki hataları ve kavram yanılgıları. Hacettepe Üniversitesi Eğitim Fakültesi Dergisi,16(17), 95-104.

Uygun, T. (2016). Developing mathematical practices in a social context: A hypothetical learning trajectory to support preservice middle school mathematics teachers’ learning of triangles. (Unpublished doctoral dissertation). Ankara: Middle East Technical University, Ankara.

Van de Walle, J. A., Karp, K. S., & Bay-Williams, J. W. (2014). İlkokul ve ortaokul matematiği gelişimsel yaklaşımla öğretim (7. Baskı).(Çev. S. Durmuş). Ankara: Nobel Yayınları.

Yemen-Karpuzcu, S. & Işıksal-Bostan, M. (2013). Geometrik cisimler: silindir, prizma, koni, piramit ve kürenin matematiksel anlamı. İ.Ö. Zembat, M. F. Özmantar, E. Bingölbali, Şandır, H. ve A. Delice (Edt.), Tanımları ve tarihsel gelişimleriyle matematiksel kavramlar (s. 278-279). Ankara: Pegem Akademi.

Yıldız, Z. (2009). Geometrik cisimlerin yüzey alanları ve hacimleri konularında bilgisayar destekli öğretimin ilköğretim 8. sınıf öğrenci tutumu ve başarısına etkisi. (Yayımlanmamış yüksek lisans tezi). Ankara: Gazi Üniversitesi Eğitim Bilimleri Enstitüsü.




DOI: http://dx.doi.org/10.46827/ejes.v0i0.675

Refbacks

  • There are currently no refbacks.


Copyright (c) 2018 Burçin Gökkurt Özdemir

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright © 2015-2023. European Journal of Education Studies (ISSN 2501 - 1111) is a registered trademark of Open Access Publishing Group. All rights reserved.


This journal is a serial publication uniquely identified by an International Standard Serial Number (ISSN) serial number certificate issued by Romanian National Library (Biblioteca Nationala a Romaniei). All the research works are uniquely identified by a CrossRef DOI digital object identifier supplied by indexing and repository platforms. All authors who send their manuscripts to this journal and whose articles are published on this journal retain full copyright of their articles. All the research works published on this journal are meeting the Open Access Publishing requirements and can be freely accessed, shared, modified, distributed and used in educational, commercial and non-commercial purposes under a Creative Commons Attribution 4.0 International License (CC BY 4.0).