CARTES CONCEPTUELLES ET FORMATION DES ENSEIGNANTS DU PRIMAIRE. LE CAS DE LA VISION DANS L’OPTIQUE GÉOMÉTRIQUE / CONCEPT MAPS AND PRIMARY SCHOOL TEACHERS TRAINING. THE CASE OF THE VISION IN GEOMETRICAL OPTICS

Evgenia-Motya Sotirova

Abstract


Dans cet article est présentée une recherche sur l'utilisation des cartes conceptuelles pour la transformation des représentations mentales de 32 futurs enseignants du phénomène de la vision dans le modèle de l’optique géométrique. Les données empiriques ont été recueillies à travers un entretien à l’aide d’une discussion ouverte avant et après une intervention didactique et une carte conceptuelle de chaque enseignant. Les résultats de la recherche montrent que les cartes conceptuelles permettent le progrès cognitif des apprenants et constituent un outil approprié pour une intervention didactique systématique sur la vision.

In this article is presented a research on the use of concept maps on the transformation of mental representations of 32 future teachers for the phenomenon of vision in geometrical optics model. The empirical data were collected through an interview with an open discussion before and after an educational intervention and a conceptual map of each teacher. The research results show that concept maps allow the cognitive progress of learners and are a suitable tool for systematic didactic intervention on the vision.

 

Article visualizations:

Hit counter

DOI

Keywords


cartes conceptuelles, formation des enseignants, didactique de l’optique géométrique, vision / conceptual maps, teachers training, didactics of geometrical optics, vision.

Full Text:

PDF

References


Abad, R. C., Repilado Ramírez, F. L., & Vega, A. G. (2017). Los mapas conceptuales en la enseñanza de la física: una alternativa para desarrollar el aprendizaje en los estudiantes de ingeniería geológica. Didasc@lia: Didáctica y Educación, 8(6), 185-193.

Anderson, C., & Smith, E. (1982). Student conceptions of light, colour and seeing. Paper presented at the annual convention of the National Association for Research in Science Teaching, Fontana, Wisconsin.

Andersson, B., & Karrqvist, C. (1983). How Swedish pupils aged 12-15 years understand light and its properties. European Journal of Science Education, 5(4), 387-402.

Anthopoulou, V., & Ravanis, K. (2016). How do we see when the light is not “enough”? Mental representations of pre-service preschool teachers. International Education and Research Journal, 2(8), 30-32.

Boyes, E., & Stanistreet, M. (1991). Development of pupils' ideas of hearing and seeing – the path of light and sound. Research in Science and Technology Education, 9, 223-244

Canedo-Ibarra, S. P., Castelló-Escandell, J., García-Wehrle, P., & Morales-Blake, A. R. (2010). Precursor models construction at preschool education: an approach to improve scientific education in the classroom. Review of Science, Mathematics and ICT Education, 4(1), 41-76.

Castro, D. (2018). L’apprentissage de la propagation rectiligne de la lumière par les élèves de 10-11 ans. La comparaison de deux modèles d’enseignement. European Journal of Education Studies, 4(5), 1-10.

Castro, D., & Rodriguez, J. (2014). 8-9 year old pupils' mental representations of light: teaching perspectives. Journal of Advances in Natural Sciences, 2(1), 40-44.

Costamagna, A. M. (2002). Mapas conceptuales como expresión de procesos de interrelación para evaluar la evolución del conocimiento de alumnos universitarios. Enseñanza de las Ciencias, 19(2), 309-318.

Dedes, C. (2005). The mechanism of vision: Conceptual similarities between historical models and children’s representations. Science & Education, 14, 699-712.

Dedes, C., & Ravanis, K. (2009a). Teaching image formation by extended light sources: The use of a model derived from the history of science. Research in Science Education, 39(1), 57-73.

Dedes, C., & Ravanis, K. (2009b). History of science and conceptual change: the formation of shadows by extended light sources. Science & Education, 18(9), 1135-1151.

Gallegos Cázares, L., Flores Camacho, F., & Calderón Canales, E. (2009). Preschool science learning: The construction of representations and explanations about color, shadows, light and images. Review of Science, Mathematics and ICT Education, 3(1), 49-73.

Grigorovitch, A. (2014). Children’s misconceptions and conceptual change in Physics Education: the concept of light. Journal of Advances in Natural Sciences, 1(1), 34-39.

Grigorovitch, A. (2015). Teaching optics perspectives: 10-11 year old pupils' representations of light. International Education & Research Journal, 1(3), 4-6.

Grigorovitch, A., & Nertivich, D. (2017). Représentations mentales des élevés de 10-12 ans sur la formation des ombres. European Journal of Education Studies, 3(5), 150-160.

Guesne, E. (1984). Children's ideas about light. In E. J. Wenham (Ed.), New Trends in Physics Teaching (v. IV, pp. 179-192). Paris: UNESCO.

Guesne, E. (1985). Light. In R. Driver, E. Guesne & A. Tiberghien (Eds), Children's ideas in science (pp. 10-32). Philadelphia: Open University Press.

Houatis, D., & Oldache, M. (2018). The link between the abstractive dimension of perception faculties in the avicennial doctrine and the model concept in physical science: mechanism of vision as an example. Educational Journal of the University of Patras UNESCO Chair, 5(2), 54-66.

Kampeza, M., & Ravanis, K. (2009). Transforming the representations of preschool-age children regarding geophysical entities and physical geography. Review of Science, Mathematics and ICT Education, 3(1), 141-158.

Kokologiannaki, V., & Ravanis, K. (2012). Mental representations of sixth graders in Greece for the mechanism of vision in conditions of day and night. International Journal of Research in Education Methodology, 2(1), 78-82.

Kokologiannaki, V., & Ravanis, K. (2013). Greek sixth graders mental representations of the mechanism of vision. New Educational Review, 33(3), 167-184.

Laval, A. (1985). Chaleur, température, changements d’état. Aster, 1, 115-132.

Mason, C. A. (1992). Concept mapping, a tool to develop reflective science instruction. Science Education, 76(1), 51-63.

Nesbit, J. C., & Adesope, O. O. (2006). Learning with concept and knowledge maps: A meta-analysis. Review of Educational Research, 76, 413-448.

Nertivich, D. (2016). Représentations des élevés de 11-12 ans pour la formation des ombres et changement conceptuel. International Journal of Progressive Sciences and Technologies, 3(2), 103-107.

Novak, J. D. (1990). Concept mapping: a useful tool for Science Education. Journal of Research in Science Teaching, 27(10), 937-949.

Novak, J. D. (2010). Learning, creating, and using knowledge: Concept maps as facilitative tools in schools and corporations. New York, NY: Routledge.

Ramadas, J., & Driver, R. (1989). Aspects of secondary students’ ideas about light. Leeds: University of Leeds, Centre for Studies in Science and Mathematics Education.

Ravanis, K. (2000). How do we see objects that reflect light? Experiential mental representations of students of 12-13 years old, about vision. In N. Valanidis (Ed.), Second Panhellenic Conference on Teaching of Science and Application of new Technologies in Education (v. I, pp. 214-221). Nicosia: Department of Education, University of Cyprus.

Ravanis, K. (2018). How do we see the non luminous object? 12-13 years-old students’ mental representations of vision. Jurnal Ilmiah Pendidikan Fisika ‘Al-BiRuNi’, 7(1), 1-9.

Ravanis, K., & Boilevin, J.-M. (2009). A comparative approach to the representation of light for five-, eight- and ten-year-old children: didactical perspectives. Journal of Baltic Science Education, 8(3), 182-190.

Rodriguez, J., & Castro, D. (2016). Changing 8-9 year-old pupil’s mental representations of light: a metaphor based teaching approach. Asian Education Studies, 1(1), 40-46.

Selley, N. J. (1996). Children’s ideas on light and vision. International Journal of Science Education, 18(6), 713-723.

Serhane, A., Zeghdaoui, A., & Debiach, M. (2017). Elementary dynamics in Algerian secondary school: difficulties of assimilation and contribution of modeling activities in the construction of the notion of force. Educational Journal of the University of Patras UNESCO Chair, 4(2), 70-79.

Soika, K., & Reiska, P. (2014). Using concept mapping for assessment in science education. Journal of Baltic Science Education, 13(5), 662-673.

Stead, B., & Osborne, R. (1980). Exploring student's concepts of light. Australian Science Teacher Journal, 3(26), 84-90.

Su, K. D. (2017). Tactic fulfillments of three correlations for problem-solving maps and animated presentations to assess students’ stoichiometry performances. Journal of Baltic Science Education, 16(5), 733-745.

Voutsinos, C. (2013). Teaching Optics: light sources and shadows. Journal of Advances in Physics, 2(2), 134-138.

Watts, D. M. (1985). Student conceptions of light: a case study. Physics Education, 20(4), 183-187.

Zimmermann-Asta, M. L. (1990). Concept de chaleur: Contribution à l'étude des conceptions d'élèves et de leurs utilisations dans un processus d'apprentissage. Thèse de doctorat, Genève: FPSE-Université de Genève.




DOI: http://dx.doi.org/10.46827/ejae.v0i0.1884

Refbacks

  • There are currently no refbacks.


Copyright © 2015 - 2026. European Journal of Alternative Education Studies (ISSN 2501-5915) is a registered trademark of Open Access Publishing GroupAll rights reserved.

This journal is a serial publication uniquely identified by an International Standard Serial Number (ISSN) serial number certificate issued by Romanian National Library (Biblioteca Nationala a Romaniei). All the research works are uniquely identified by a CrossRef DOI digital object identifier supplied by indexing and repository platforms.

All the research works published on this journal are meeting the Open Access Publishing requirements and can be freely accessed, shared, modified, distributed and used in educational, commercial and non-commercial purposes under a Creative Commons Attribution 4.0 International License (CC BY 4.0).