L’APPRENTISSAGE EN SCIENCES EXPÉRIMENTALES : LA RECHERCHE ET L’ENSEIGNEMENT / LEARNING IN EXPERIMENTAL SCIENCES: RESEARCH AND TEACHING

Evgenia-Motya Sotirova

Abstract


Dans cet article est présentée et discutée une approche pour le choix d’une planification didactique efficace à l’enseignement des sciences physiques et naturelles dans la classe.  Cette analyse propose un grand effort au niveau de la recherche éducative dirigée avant tout vers l’approfondissement de nos connaissances quant aux questions au sujet de la nature de l’apprentissage et surtout de l’apprentissage scientifique pendant le développement de l’enfant. Elle s’oriente aussi vers les modalités et les fonctions de l’apprentissage aux différents degrés de l’éducation, sur la base de l’apport de diverses connaissances et compétences qui vont de l’épistémologie et la psychologie à la didactique contemporaine.

In this article is presented and discussed an approach to the choice of an effective didactic project for the teaching of sciences at the school. This analysis propose a great effort at the level of educational research directed primarily towards deepening our knowledge on issues about the nature of learning and especially the scientific learning during the child development. The analysis also turned to the modalities and functions of learning at different levels of education, on the basis of the contribution of various knowledge and skills ranging from epistemology and psychology in the contemporary didactics.

 

Article visualizations:

Hit counter

DOI

Keywords


enseignement des sciences expérimentales, didactique, psychologie et épistémologie de l’apprentissage / teaching of experimental sciences, didactics, psychology and epistemology of learning

References


Appleton, K. (2005). Science pedagogical content knowledge and elementary school teachers. In K. Appleton (Ed.), Elementary science teacher education (pp. 31-54). Abingdon: Routledge.

Bachelard, G. (1980). La formation de l'esprit scientifique. Paris: Vrin.

Bryce, T. G. K., & Blown, E. J. (2013). Children's concepts of the shape and size of the Earth, Sun and Moon. International Journal of Science Education, 35(3), 388-446.

Canedo-Ibarra, S. P., Castelló-Escandell, J., García-Wehrle, P., & Morales-Blake, A. R. (2010). Precursor models construction at preschool education: an approach to improve scientific education in the classroom. Review of Science, Mathematics and ICT Education, 4(1), 41-76.

Chevallard, Y. (1985). La transposition didactique. Grenoble: La Pensée Sauvage.

Conne, F. (1992). Savoir et connaissance dans la perspective de la transposition didactique. Recherches en Didactique des Mathématiques, 12(2-3), 221-270

Goffard, M., & Weil-Barais, A. (2005) Enseigner et apprendre les sciences (Paris: Armand Colin).

Gönen, S., & Kocakaya, S. (2010). A cross-age study on the understanding of heat and temperature. Eurasian Journal of Physics and Chemistry Education, 2(1), 1-15.

Grigorovitch, A., & Nertivich, D. (2017b). Représentations mentales des élevés de 10-12 ans sur la formation des ombres. European Journal of Education Studies, 3(5), 150-160.

Halbwachs, F. (1974). La pensée physique chez l’enfant et le savant. Neuchâtel: Delachaux & Niestlé.

Halbwachs, F. (1975). La physique du maître entre la physique du physicien et la physique de l’élève. Revue Française de Pédagogie, 33, 19-29.

Johsua, S., & Dupin, J.-J. (1993). Introduction à la didactique des sciences et des mathématiques. Paris: PUF.

Kamii, C. (1982). La connaissance physique et le nombre à l'école enfantine. Approche piagétienne. Pratiques et théorie. Genève: Université de Genève.

Kamii, C., & Kato, Y. (Eds). (2007). Piaget’s constructivism and early childhood education: I. Physical-knolwedge activities. Okayama City, Japan: Daigaku Kyoiku.

Kampeza, M. & Ravanis, K. (2009). Transforming the representations of preschool-age children regarding geophysical entities and physical geography. Review of Science, Mathematics and ICT Education, 3(1), 141-158.

Kampeza, M., & Ravanis, K. (2012). Children’s understanding of the earth’s shape: an instructional approach in early education. Skholê, 17, 115-120.

Küçüközer, H. (2007). Prospective science teachers’ conceptions about astronomical subjects. Science Education International, 18(1), 113-130.

Laval, A. (1985). Chaleur, température, changements d’état. Aster, 1, 115-132.

Lemeignan, G. & Weil-Barais, A. (1993). Construire des concepts en Physique. Paris: Hachette.

Martinand, J.-L. (1986). Connaître et transformer la matière. Berne: Peter Lang.

Magnusson, S., Krajcik, J., & Borko, H. (1999). Nature, sources and development of pedagogical content knowledge for science teaching. In J. Gess-Newsome & N. G. Lederman (Eds), Examining pedagogical content knowledge: the construct and its implications for science education (pp. 95-132). Dordrecht, The Netherlands: Kluwer Academic.

Metz, K. (2009). Rethinking what is "developmentally appropriate" from a learning progression perspective: the power and the challenge. Review of Science, Mathematics and ICT Education, 3(1), 5-22.

Nertivich, D. (2016). Représentations des élevés de 11-12 ans pour la formation des ombres et changement conceptuel. International Journal of Progressive Sciences and Technologies, 3(2), 103-107.

Ntalakoura, V., & Ravanis, K. (2014). Changing preschool children’s representations of light: a scratch based teaching approach. Journal of Baltic Science Education, 13(2), 191-200.

Park, S., & Oliver, S. J. (2008). Revisiting the conceptualization of Pedagogical Content Knowledge (PCK): PCK as a conceptual tool to understand teachers as professionals. Research in Science Education, 38, 261–284.

Piaget, J. (1973). Τhe child's conception of the world. St. Albans Herts: Paladin.

Ravanis, K. (2005). Les Sciences Physiques à l’école maternelle: éléments théoriques d’un cadre sociocognitif pour la construction des connaissances et/ou le développement des activités didactiques. International Review of Education, 51(2/3), 201-218.

Ravanis, K. (2013). Mental representations and obstacles in 10-11 year old children’s thought concerning the melting and coagulation of solid substances in everyday life. Preschool and Primary Education, 1(1), 130-137.

Ravanis, K. (2014). Les représentations des enfants de 5-6 ans sur la fusion et la solidification du sel, comme support pour le déploiement des activités didactiques. International Journal of Research in Education Methodology, 6(3), 943-947.

Ravanis, K. (2017). Early Childhood Science Education: state of the art and perspectives. Journal of Baltic Science Education, 16(3), 284-288.

Robson, S. (2012). Developing thinking and understanding in young children: an introduction for students. London: Routledge.

Rodriguez, J., & Castro, D. (2014). Children's ideas of changes in the state of matter: solid and liquid salt. Journal of Advances in Humanities, 1(1), 1-6.

Rodriguez, J., & Castro, D. (2016). Changing 8-9 year-old pupil’s mental representations of light: a metaphor based teaching approach. Asian Education Studies, 1(1), 40-46.

Shulman, L. S. (1986). Those who understand: Knowledge growth in teaching. Educational Researcher, 15, 4-14.

Rozenszaijn, R., & Yarden, A. (2014). Expansion of biology teachers’ Pedagogical Content Knowledge (PCK) during a long-term professional development program. Research in Science Education, 44, 189–213.

Shulman, L. S. (1987). Knowledge and teaching: Foundations of the new reform. Harvard Educational Review, 57, 1-22.

Tsai, C.-C., & Wen, L. M. C. (2005). Research and trends in science education from 1998 to 2002: a content analysis of publication in selected journals. International Journal of Science Education, 27(1), 3–14.

Vellopoulou, A., & Ravanis, K. (2010). A methodological tool for approaching the didactic transposition of the natural sciences in kindergarten school: the case of the “states and properties of matter” in two Greek curricula. Review of Science, Mathematics and ICT Education, 4(2), 29-42.

Vygotsky, L. S. (1962). Thought and Language. Cambridge Ma: MIT Press.

Wallon, H. (1968). L’évolution psychologique de l’enfant. Paris: A. Colin.

Weil-Barais, Α., &. Lemeignan, G. (1994). Approche développementale de l’enseignement et de l’apprentissage de la modélisation. In J.-L. Martinand et al., Nouveaux regards sur l’enseignement et l’apprentissage de la modélisation en sciences (pp. 85-113). Paris: INRP.

Weil-Barais, A. (2001). Constructivist approaches and the teaching of science. Prospects, 31(2), 187-196.

Zimmermann-Asta, M. L. (1990). Concept de chaleur: Contribution à l'étude des conceptions d'élèves et de leurs utilisations dans un processus d'apprentissage. Thèse de doctorat, Genève: FPSE-Université de Genève.




DOI: http://dx.doi.org/10.46827/ejes.v0i0.1292

Refbacks

  • There are currently no refbacks.


Copyright (c) 2018 Evgenia-Motya Sotirova

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright © 2015-2023. European Journal of Education Studies (ISSN 2501 - 1111) is a registered trademark of Open Access Publishing Group. All rights reserved.


This journal is a serial publication uniquely identified by an International Standard Serial Number (ISSN) serial number certificate issued by Romanian National Library (Biblioteca Nationala a Romaniei). All the research works are uniquely identified by a CrossRef DOI digital object identifier supplied by indexing and repository platforms. All authors who send their manuscripts to this journal and whose articles are published on this journal retain full copyright of their articles. All the research works published on this journal are meeting the Open Access Publishing requirements and can be freely accessed, shared, modified, distributed and used in educational, commercial and non-commercial purposes under a Creative Commons Attribution 4.0 International License (CC BY 4.0).