UN CADRE MÉTHODOLOGIQUE POUR LA DÉMARCHE D’INVESTIGATION : L’EXEMPLE DU CHANGEMENT D’ÉTAT DE L’EAU À L’ÂGE DE 8 ANS / A METHODOLOGICAL FRAMEWORK FOR THE INQUIRY BASED METHOD: THE EXAMPLE OF CHANGING THE STATE OF WATER AT AGE OF EIGHT

Phan Sung Tin

Abstract


Dans cet article on présente une procédure méthodologique pour le déploiement des activités scientifiques dans le cadre de la démarche d’investigation. Après une petite introduction à la démarche d’investigation en sciences et à sa relation avec les représentations mentales des élèves, on tente d'appliquer la méthode à une activité expérimentale visant au changement d’état de l'eau chez des enfants de 8 ans. Ensuite, une analyse systématique de toutes les étapes du développement de l’activité est réalisée afin de présenter les phases et leur contenu.

In this article we present a methodological procedure for the deployment of scientific inquiry activities. After a short introduction to inquiry based method in science and its relationship with mental representations of students, we try to apply the method to an experimental activity to the state change of water with 8 years old children. Then, a systematic analysis of all stages of the development of the activity is carried out in order to present the phases and their content.

 

Article visualizations:

Hit counter

DOI

Keywords


la démarche d’investigation, école primaire, enseignement des sciences physiques, représentations mentales / inquiry based method primary school, physical science teaching, mental representations

Full Text:

PDF

References


Albert, E. (1978). Development of the concept of heat in children. Science Education, 62(3), 389-399.

Bayram, C., Ayas, A., Niaz, M., Ünal, S., & Çalik, M. (2007). Facilitating conceptual change in students’ understanding of boiling concept. Journal of Science Education and Technology, 16, 524-536.

Cariou J. Y. (2013). Démarches d’investigation : en veut-on vraiment ? Regard décalé et proposition d’un cadre didactique. Recherche en Didactique des Sciences et des Technologie, 7, 137-166.

Castro, D. (2013). Light mental representations of 11-12 year old students. Journal of Social Science Research, 2(1), 35-39.

Castro, D., & Rodriguez, J. (2014). 8-9 year old pupils' mental representations of light: teaching perspectives. Journal of Advances in Natural Sciences, 2(1), 40-44.

Closset, J. L. (1985). Using cognitive conflict to teach electricity. In R. Duit, W. Jung & C. von Rhoeneck (Ed.), Aspects of understanding electricity (pp. 267-273). Kiel: Schmidt & Klaunig.

Dawson, C. L., & Rowell, J. A. (1984). Displacement of water: Weight or volume? An examination of two conflict based teaching strategies. Research in Science Education, 14, 67-77.

Dedes, C. & Ravanis, K. (2009). Teaching image formation by extended light sources: The use of a model derived from the history of science. Research in Science Education, 39(1), 57-73.

Delclaux, M., & Saltiel, E. (2013). Caractéristiques d’un enseignement des sciences fondé sur l’investigation et évaluation de dispositifs d’accompagnement des enseignants. Review of Science, Mathematics & ICT Education, 7(2), 35-51.

Gönen, S., & Kocakaya, S. (2010). A cross-age study on the understanding of heat and temperature. Eurasian Journal of Physics & Chemistry Education, 2(1), 1-15.

Grigorovitch, A. (2018). Enseignement des sciences par projet et didactique : éléments théoriques pour une coordination. European Journal of Education Studies, 4(1), 174-183.

Harrison, A. G., Grayson, D. J., & Treagust, D. F. (1999). Investigating a grade 11 student's evolving conceptions of heat and temperature. Journal of Research in Science Teaching, 36(1), 55-87.

Harlen, W. (2013). Inquiry-based learning in science and mathematics. Review of Science, Mathematics & ICT Education, 7(2), 9-33.

Hart, C. (2008). Models in physics, models for physics learning, and why the distinction may matter in the case of electric circuits. Research in Science Education, 38, 529–544.

Hast, M., & Howe, C. (2012) Understanding the beliefs informing children’s commonsense theories of motion: The role of everyday object variables in dynamic event predictions. Research in Science & Technological Education, 30(1), 3-15.

Kada, V., & Ravanis, K. (2016). Creating a simple electric circuit with children between the ages of five and six. South African Journal of Education, 36(2), 1-9.

Kaliampos, G., & Ravanis, K. (2019). Thermal conduction in metals: mental representations in 5-6 years old children’s thinking. Jurnal Ilmiah Pendidikan Fisika ‘Al-BiRuNi’, 8(1), 1-9.

Kokologiannaki, V., & Ravanis, K. (2013). Greek sixth graders mental representations of the mechanism of vision. New Educational Review, 33(3), 167-184.

Kotuáková, K. (2013). Teachers’ focus on pupil’s prior conceptions in Inquiry-Based Teaching. Review of Science, Mathematics & ICT Education, 7(2), 53-71.

La Main à la Pâte (2019). La démarche d'investigation. Retrieved from https://www.fondation-lamap.org/fr/page/17793/la-demarche-dinvestigation.

Laval, A. (1985). Chaleur, température, changements d’état. Aster, 1, 115-132.

Leite, L. (1999). Heat and temperature: An analysis of how these concepts are dealt with in textbooks. European Journal of Teacher Education, 22(1), 75–88.

Nertivich, D. (2013). Magnetic field mental representations of 15-16 year old students. Journal of Advances in Physics, 2(1), 53-58.

Nertivich, D. (2018). Concepts thermiques de base chez les élèves de 17 ans. European Journal of Education Studies, 4(2), 145-154.

Ouasri, A. (2017). Analyse des difficultés des élèves de deuxième année Baccalauréat marocain en résolution de problèmes de Mécanique. Educational Journal of the University of Patras UNESCO Chair, 3(2), 39-57.

Pathare, S. R., & Pradhan, H. C. (2010). Students’ misconceptions about heat transfer mechanisms and elementary kinetic theory. Physics Education, 45(5), 629-634.

Ravanis, K. (2005). Les Sciences Physiques à l’école maternelle: éléments théoriques d’un cadre sociocognitif pour la construction des connaissances et/ou le développement des activités didactiques. International Review of Education, 51(2/3), 201-218.

Ravanis, K. (2010). Représentations, Modèles Précurseurs, Objectifs-Obstacles et Médiation-Tutelle : concepts-clés pour la construction des connaissances du monde physique à l’âge de 5-7 ans. Revista Electrónica de Investigación en Educación en Ciencias, 5(2), 1-11.

Ravanis, K. (2013). Mental representations and obstacles in 10-11 year old children’s thought concerning the melting and coagulation of solid substances in everyday life. Preschool and Primary Education, 1(1), 130-137.

Ravanis, K. (2014). Les représentations des enfants de 5-6 ans sur la fusion et la solidification du sel, comme support pour le déploiement des activités didactiques. International Journal of Research in Education Methodology, 6(3), 943-947.

Ravanis, K. (2019). Mental representations of light propagation time for 10- and 14-year-old students: didactical perspectives. Journal of Baltic Science Education, 18(2), 276-285.

Ravanis, K., & Bagakis, G. (1998). Science education in kindergarten: sociocognitive perspective. International Journal of Early Years Education, 6(3), 315-327.

Rodriguez, J. (2018). Des représentations aux premiers modèles: le monde physique dans la pensée des petits enfants. European Journal of Education Studies, 5(2), 1-9.

Rodriguez, J., & Castro, D. (2014). Children's ideas of changes in the state of matter: solid and liquid salt. Journal of Advances in Humanities, 1(1), 1-6.

Rodriguez, J., & Castro, D. (2016). Changing 8-9 year-old pupil’s mental representations of light: a metaphor based teaching approach. Asian Education Studies, 1(1), 40-46.

Sotirova, E.-M. (2017). L’apprentissage en sciences expérimentales : la recherche et l’enseignement. European Journal of Education Studies, 3(12), 188-198.

Syuhendri, S. (2017). A learning process based on conceptual change approach to foster conceptual change in newtonian mechanics. Journal of Baltic Science Education, 16(2), 228-240.

Tin, P. S. (2016). Peuvent-ils les enfants de l’âge préscolaire construire un modèle pour la flottaison et l’immersion? International Journal of Progressive Sciences and Technologies, 4(2), 72-76.

Tin, P. S. (2018). Élaboration expérimentale des représentions mentales des élèves de 16 ans sur les concepts thermiques. European Journal of Education Studies, 4(7), 141-150.

Van Hise, Y. A. (1988). Student misconceptions in mechanics: An international problem? The Physics Teacher, 26, 498-502.

Zimmermann-Asta, M. L. (1990). Concept de chaleur: Contribution à l'étude des conceptions d'élèves et de leurs utilisations dans un processus d'apprentissage. Thèse de doctorat, Genève: FPSE-Université de Genève.




DOI: http://dx.doi.org/10.46827/ejes.v0i0.2499

Refbacks

  • There are currently no refbacks.


Copyright (c) 2019 Phan Sung Tin

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright © 2015-2023. European Journal of Education Studies (ISSN 2501 - 1111) is a registered trademark of Open Access Publishing Group. All rights reserved.


This journal is a serial publication uniquely identified by an International Standard Serial Number (ISSN) serial number certificate issued by Romanian National Library (Biblioteca Nationala a Romaniei). All the research works are uniquely identified by a CrossRef DOI digital object identifier supplied by indexing and repository platforms. All authors who send their manuscripts to this journal and whose articles are published on this journal retain full copyright of their articles. All the research works published on this journal are meeting the Open Access Publishing requirements and can be freely accessed, shared, modified, distributed and used in educational, commercial and non-commercial purposes under a Creative Commons Attribution 4.0 International License (CC BY 4.0).