UNE APPROCHE DES REPRÉSENTATIONS DES ENFANTS DE 5 À 14 ANS SUR LA FUSION ET LA SOLIDIFICATION DU SEL \ AN APPROACH TO THE REPRESENTATIONS OF CHILDREN FROM 5 TO 14 YEARS ON THE FUSION AND SOLIDIFICATION OF SALT
Abstract
The representation of the properties and phenomena of the physical world exists from the beginning of life, as a first datum of reality. In several studies focused on children's representations, we find that these representations are critical to education and are often incompatible with the scientific model. This article presents the results of an empirical research on the representations of children for melting and solidification of salt. The research sample consisted of 359 Greek students 5 to 14 years, divided into four age groups. Data were collected through expanded, open type, semi-structured individual conversations between a child of the sample and one researcher. The results of the interviews show that these children use different types of representations, the majority dominated by the nature of the substance under study.
Article visualizations:
Keywords
References
Andersson, B. (1990). Pupils’ conceptions of matter and its transformation (age 12-16). Studies in Science Education, 18, 53-85.
Baser, M. (2006). Fostering conceptual change by cognitive conflict based instruction on students’ understanding of Heat and Temperature concepts. Eurasia Journal of Mathematics, Science and Technology Education, 2(2), 96-114.
Boilevin, J.-M. (2013). Rénovation de l’enseignement des sciences physiques et formation des enseignants. Regards didactiques. Bruxelles: De Boeck.
Delserieys, A., Jégou, C., & Givry, D. (2014). Preschool children understanding of a precursor model of shadow formation. In C. P. Constantinou, N. Papadouris & A. Hadjigeorgiou (Eds.), E-Book Proceedings of the ESERA 2013 Conference: Science Education Research For Evidence-based Teaching and Coherence in Learning. Part 15 (co-ed. E. Glauert & F. Stylianidou, Early years science education) (pp. 5-13). Nicosia, Cyprus: European Science Education Research Association.
Driver, R., Guesne, E., & A. Tiberghien (Eds). (1985). Children’s ideas in science. Philadelphia: Open University Press.
Fragkiadaki, G. & Ravanis, K. (2014). Mapping the interactions between young children while approaching the natural phenomenon of clouds creation. Educational Journal of the University of Patras UNESCO Chair, 1(2), 112-122.
Giordan, A., & De Vecchi, G. (1987). Les origines du savoir, Des conceptions des apprenants aux conceptions scientifiques. Paris: Delachaux & Niestlé.
Gönen, S., & Kocakaya, S. (2010). A cross-age study on the understanding of heat and temperature. Eurasian Journal of Physics and Chemistry Education, 2(1), 1-15.
Harrison, A. G., Grayson, D. J., & Treagust, D. F. (1999). Investigating a grade 11 student's evolving conceptions of heat and temperature. Journal of Research in Science Teaching, 36(1), 55-87.
Johsua, S., & Dupin, J.-J. (1993). Introduction à la didactique des sciences et des mathématiques. Paris: PUF.
Jones, B. L. (1984). How solid is a solid: does it matter? Research in Science Education, 14, 104-113.
Jones, B. L., & Lynch, P. P. (1989). Children’s understanding of the notions of solid and liquid in relation to some common substances. International Journal of Science Education, 11(4), 417-427.
Kambouri, M. (2011). Children’s misconceptions and the teaching of early years Science: a case study. Journal of Emergent Science, 2(2), 7-16.
Kambouri, M., & Michaelides, A. (2014). Using drama techniques for the teaching of early years Science: a case study. Journal of Emergent Science, 7, 7-14.
Kambouri, M., & Michaelides. A. (2015). Dramatic water: using a drama-based approach to science in the early years. Primary Science Journal, 135, 10-12.
Kampeza, M., & Ravanis, K. (2009). Transforming the representations of preschool-age children regarding geophysical entities and physical geography. Review of Science, Mathematics and ICT Education, 3(1), 141-158.
Kampeza, M., Vellopoulou, A, Fragkiadaki, G., & Ravanis, K. (2016). The expansion thermometer in preschoolers’ thinking. Journal of Baltic Science Education, 15(2), 185-193.
Kesidou, S., Duit, R., & Glynn S. M. (1995). Conceptual development in physics: students’ understanding of heat. In S. M. Glynn & R. Duit (Eds), Learning science in the schools: research reforming practice (pp. 179-198). Mahwah, NJ: Erlbaum.
Laval, A. (1985). Chaleur, température, changements d’état. Aster, 1, 115-132.
Ravanis, K. (2010). Représentations, Modèles Précurseurs, Objectifs-Obstacles et Médiation-Tutelle : concepts-clés pour la construction des connaissances du monde physique à l’âge de 5-7 ans. Revista Electrónica de Investigación en Educación en Ciencias, 5(2), 1-11.
Ravanis, Κ. (2013). Mental representations and obstacles in 10-11 year old children’s thought concerning the melting and coagulation of solid substances in everyday life. Preschool and Primary Education, 1(1), 130-137 (2013).
Ravanis, Κ. (2014a). Représentations et obstacles des enfants de 10 à 11 ans sur la fusion et la solidification du sel : perspectives didactiques. Revue Africaine de Didactique des Sciences et des Mathématiques, 10, 1-8.
Ravanis, K. (2014b). Les représentations des enfants de 5-6 ans sur la fusion et la solidification du sel, comme support pour le déploiement des activités didactiques. International Journal of Research in Education Methodology, 6(3), 943-947.
Ravanis, K. Papandreou, M. Kampeza, M., & Vellopoulou, A. (2013). Teaching activities for the construction of a precursor model in 5-6 years old children’s thinking: the case of thermal expansion and contraction of metals. European Early Childhood Education Research Journal, 21(4), 514-526.
Rodriguez, J., & Castro, D. (2014). Children’s ideas of changes in the state of matter: solid and liquid salt. Journal of Advances in Humanities, 1(1), 13-16.
Skoumios, Μ., & Hatzinikita, V. (2010). Exploring pupils’ “pathways” towards the identification of obstacles: the case of thermal equilibrium. The International Journal of Learning, 17(10), 71-87.
Skoumios, M., & Moutzouri, G. (2016). The contribution of teaching sequences to the development of students’ conceptions: temperature and phase changes. International Journal of Science, Mathematics and Technology Learning, 23(2), 1-19.
Tiberghien, A. (1983). Revue critique sur les recherches visant à élucider le sens des notions de la température et chaleur pour les élèves de 10 à 16 ans. In Atelier International d’été : Recherche en Didactique de la Physique (pp. 55-74). La Londe les Maures: CNRS.
Tiberghien, A. (1985). Heat and temperature, part B. In R. Driver, E. Guesne, & A. Tiberghien (Eds.), Children’s ideas in science (pp. 52-84). Milton Keynes: Open University Press.
Tytler, R. (2000). A comparison of year 1 and year 6 students’ conceptions of evaporation and condensation: dimensions of conceptual progression. International Journal of Science Education, 22(5), 447-467.
Zimmermann-Asta, M.-L. (1990). Concept de chaleur. Contribution à l'étude des conceptions d'élèves et de leurs utilisations dans un processus d'apprentissage. Thèse de doctorat, FPSE-Université de Genève, Genève.
DOI: http://dx.doi.org/10.46827/ejes.v0i0.569
Refbacks
- There are currently no refbacks.
Copyright (c) 2018 Konstantinos Ravanis
This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright © 2015-2023. European Journal of Education Studies (ISSN 2501 - 1111) is a registered trademark of Open Access Publishing Group. All rights reserved.
This journal is a serial publication uniquely identified by an International Standard Serial Number (ISSN) serial number certificate issued by Romanian National Library (Biblioteca Nationala a Romaniei). All the research works are uniquely identified by a CrossRef DOI digital object identifier supplied by indexing and repository platforms. All authors who send their manuscripts to this journal and whose articles are published on this journal retain full copyright of their articles. All the research works published on this journal are meeting the Open Access Publishing requirements and can be freely accessed, shared, modified, distributed and used in educational, commercial and non-commercial purposes under a Creative Commons Attribution 4.0 International License (CC BY 4.0).