FORMATION DES ENSEIGNANTS ET RECHERCHE EN DIDACTIQUE DES SCIENCES / TEACHER TRAINING AND RESEARCH IN SCIENCE EDUCATION
Abstract
Dans cet article est présentée une discussion sur la question des relations entre recherche et formation des enseignants en didactique de sciences. Le cercle en expansion « enseignement – formation des enseignants – didactique des sciences – recherche » produit d’une façon continue des mêmes problèmes adaptés à l’époque et aux contextes des systèmes éducatifs divers. Comme problèmes primordiaux et intemporels se posent ici les rôles des enseignants et des chercheurs dans ce cercle.
In this article, a discussion on the question of the relationship between research and teachers training in science education is presented. The expanding circle “teaching – teachers training – science education – research” product on an ongoing basis the same problems adapted at the time and the contexts of the various educational systems. As essential and timeless problems are raised here the roles of teachers and researchers in this circle.
Article visualizations:
References
Alidou, H., & Glanz, C. (dir.) (2015). Action research to improve youth and adult literacy: empowering learners in a multilingual world. Paris: UNESCO.
Andersson, B. (1990). Pupils’ conceptions of matter and its transformation (age 12-16). Studies in Science Education, 18, 53-85.
Anthopoulou, V., & Ravanis, K. (2016). How do we see when the light is not “enough”? Mental representations of pre-service preschool teachers. International Education and Research Journal, 2(8), 30-32.
Baimba, A. (1992). Physics teachers' action-research experience with a teaching module on “Force”. Research in Science Education, 22, 30-37.
Bilal, E., & Erol, M. (2012). Effect of teaching via modeling on achievement and conceptual understanding concerning electricity. Journal of Baltic Science Education, 11(3), 236-247.
Brenders P., & Sauzeix M. (2005). Optique MP-PC-PSI-PT. Paris: Éditions Bréal.
Castro, D., & Rodriguez, J. (2014). 8-9 year old pupils' mental representations of light: teaching perspectives. Journal of Advances in Natural Sciences, 2(1), 40-44.
Chiu, M. H., & Lin, J. W. (2002). Using multiple analogies for investigating fourth graders’ conceptual change in electricity. Chinese Journal of Research in Science Education, 10, 109-134
Cobb, V., & Cobb, J. (2005). Light action. Washington: SPIE.
Dedes, C., & Ravanis, K. (2007). Reconstruction des représentations spontanées des élèves: la formation des ombres par des sources étendues. Skholê, HS(1), 31-39.
Dedes, C. & Ravanis, K. (2009). Teaching image formation by extended light sources: The use of a model derived from the history of science. Research in Science Education, 39(1), 57-73.
Demougin, P. (2013). Recherche en éducation et formation des enseignants : quel état des lieux ou quel parcours du combattant ?, Tréma, 39, 1–8.
Dionne, H. (2000). Le développement par la recherche-action. Paris: L’Harmattan.
Dupin, J. J., & Johsua, S. (1989). Analogies and “modeling analogies” in teaching: Some examples in basic electricity. Science Education, 73, 207–224.
El-Hani, C. N., & Greca, I. M. (2013). ComPratica: a virtual community of practice for promoting biology teachers’ professional development in Brazil. Research in Science Education, 43, 1327-1359.
Elliott, J. (1991). Action research for educational change. Buckingham: Open University Press.
Fernandez, F. B. (2017). Action research in the physics classroom: the impact of authentic, inquiry based learning or instruction on the learning of thermal physics. Asia-Pacific Science Education, 3(3), 1-20.
Glauert, E. B. (2009). How young children understand electric circuits: Prediction, explanation and exploration. International Journal of Science Education, 31(8), 1025-1047.
Goodnough, K. (2011). Taking action in science classrooms through collaborative action research. Rotterdam: Sense Publishers.
Grigorovitch, A. (2014). Children’s misconceptions and conceptual change in Physics Education: the concept of light. Journal of Advances in Natural Sciences, 1(1), 34-39.
Grigorovitch, A., & Nertivich, D. (2017). Représentations mentales des élevés de 10-12 ans sur la formation des ombres. European Journal of Education Studies, 3(5), 150-160.
Gunstone, R. (2000). Science teachers as researchers in Australia. Some examples. Research in Science Education, 30, 255-257.
Hamza, K., Piqueras, J., Wickman, P.-O. & Angelin, M. (2017). Who owns the content and who runs the risk? Dynamics of teacher change in teacher–researcher collaboration. Research in Science Education, DOI 10.1007/s11165-016-9594-y.
Harrison, A. G., Grayson, D. J., & Treagust, D. F. (1999). Investigating a grade 11 student's evolving conceptions of heat and temperature. Journal of Research in Science Teaching, 36(1), 55-87.
Hess, R. (1989). Recherche-action et formation, le travail de terrain ». Pratiques de formation / Analyses, 18. Retrieved from http://www-ufr8.univ-paris8.fr/pfa/18presentation.html.
Kada, V. & Ravanis, K. (2016). Creating a simple electric circuit with children between the ages of five and six. South African Journal of Education, 36(2), 1-9.
Kesidou, S., Duit, R., & Glynn S. M. (1995). Conceptual development in physics: students’ understanding of heat. In S. M. Glynn & R. Duit (Eds), Learning science in the schools: research reforming practice (pp. 179-198). Mahwah, NJ: Erlbaum.
Korganci, Ν., Mirona, C., Dafineia, A., & Antohe, S. (2015). The importance of inquiry-based learning on electric circuit models for conceptual understanding. Procedia - Social and Behavioral Sciences, 191, 2463-2468.
Laval, A. (1985). Chaleur, température, changements d’état. Aster, 1, 115-132.
Letor, C., & Périsset Bagnoud, D. (2010). Travailler ensemble entre logiques professionnelles, organisationnelles et institutionnelles : Un développement professionnel sous contraintes. In L. Corriveau et al., (dir.). Travailler ensemble dans les établissements scolaires et de formation (pp. 165-173). Bruxelles : De Boeck.
May, M. (1996). Introduction à l'optique: Cours, exercices d'application, problèmes résolus. Paris: Dunod.
Möller, K. D., & Bélorgeot, C. (2007). Cours d'optique. Paris: Springer-Verlag.
Nertivich, D. (2016). Représentations des élevés de 11-12 ans pour la formation des ombres et changement conceptuel. International Journal of Progressive Sciences and Technologies, 3(2), 103-107.
Ntalakoura, V., & Ravanis, K. (2014). Changing preschool children’s representations of light: a scratch based teaching approach. Journal of Baltic Science Education, 13(2), 191-200.
Pedretti, E. (1996) Facilitating action research in Science, Technology and Society (STS) Education: an experience in reflective practice. Educational Action Research, 4, 307-327.
Ravanis, K. (2010). Représentations, Modèles Précurseurs, Objectifs-Obstacles et Médiation-Tutelle : concepts-clés pour la construction des connaissances du monde physique à l’âge de 5-7 ans. Revista Electrónica de Investigación en Educación en Ciencias, 5(2), 1-11.
Ravanis, Κ. (2013). Mental representations and obstacles in 10-11 year old children’s thought concerning the melting and coagulation of solid substances in everyday life. Preschool and Primary Education, 1(1), 130-137 (2013).
Ravanis, K. (2017a). Une approche des représentations des enfants de 5 à 14 ans sur la fusion et la solidification du sel. European Journal of Education Studies, 3(4), 223-235.
Ravanis, K. (2017b). Early Childhood Science Education: state of the art and perspectives. Journal of Baltic Science Education, 16(3), 284-288.
Robson, S. (2012). Developing thinking and understanding in young children: an introduction for students. London: Routledge.
Rodriguez, J., & Castro, D. (2014). Children's ideas of changes in the state of matter: solid and liquid salt. Journal of Advances in Humanities, 1(1), 1-6.
Tabachnick, B. R., & Zeichner, K. M. (1999). Idea and action: action research and the development of conceptual change teaching of science. Science Education, 83, 309–322.
Tiberghien, A. (1983). Revue critique sur les recherches visant à élucider le sens des notions de la température et chaleur pour les élèves de 10 à 16 ans. In Atelier International d’été : Recherche en Didactique de la Physique (pp. 55-74). La Londe les Maures: CNRS.
Tiberghien, A. (1985). Heat and temperature: the development of ideas with teaching. In R. Driver, E. Guesne & A. Tiberghien (Eds.), Children's ideas in science (pp. 66-84). Milton Keynes, UK: Open University Press.
Tytler, R. (2000). A comparison of year 1 and year 6 students’ conceptions of evaporation and condensation: dimensions of conceptual progression. International Journal of Science Education, 22(5), 447-467.
Voutsinos, C. (2013). Teaching Optics: light sources and shadows. Journal of Advances in Physics, 2(2), 134-138.
DOI: http://dx.doi.org/10.46827/ejes.v0i0.994
Refbacks
- There are currently no refbacks.
Copyright (c) 2018 Zebun Arun
This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright © 2015-2023. European Journal of Education Studies (ISSN 2501 - 1111) is a registered trademark of Open Access Publishing Group. All rights reserved.
This journal is a serial publication uniquely identified by an International Standard Serial Number (ISSN) serial number certificate issued by Romanian National Library (Biblioteca Nationala a Romaniei). All the research works are uniquely identified by a CrossRef DOI digital object identifier supplied by indexing and repository platforms. All authors who send their manuscripts to this journal and whose articles are published on this journal retain full copyright of their articles. All the research works published on this journal are meeting the Open Access Publishing requirements and can be freely accessed, shared, modified, distributed and used in educational, commercial and non-commercial purposes under a Creative Commons Attribution 4.0 International License (CC BY 4.0).